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Abstract 

A consequence of partial discharge 
activity within a gaseous void is the 
production of a field enhancement in 
the solid dielectric in the proximity 
of the void. This situation arises due 
to the charge created by the partial 
discharges accumulating at the void 
wall. The influence of the spatial ex- 
tent of this wall charge upon the max- 
imum field strength in the solid is ex- 
amined and discussed. 

Introduction 

The occurrence of partial discharges in 
a gaseous void within a solid dielect- 
ric not only induces a charge on the 
detecting electrode but also leads to 
the accumulation of charge at the void 
wall. This surface charge produces an 
electric field which, in the solid 
dielectric, augments the applied field. 
Moreover, adjacent to the void, a sig- 
nificant short-range field-enhancement 
is manifest in the bulk medium [1,2]. 

For spherical voids, the wall charge re- 
presents a spherical cap of charge. In 
the present paper, the influence of the 
spatial (angular) extent of the caps of 
charge upon the field enhancement is 
examined and discussed with reference 
to partial discharge activity. 

General Aspects 

We begin by considering a system of two 
homogeneous isotropic media a and b 

b' 
which possess permittivities & 

respectively. Medium b represents a 

and & a 
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spherical inclusion, of radius R, em- 
bedded within medium a which occupies 
the remainingvolume extendingtoinfin- 
ity. Hence with respect to spherical 
coordinates r, 8 ,  IC/ centred on the in- 
clusion, the interface between a and b 
is represented by the surface r = R. 

At this interface we have two spherical 
caps of charge of opposite polarity. 
These are located symmetrically about a 
common axis, and each subtends an angle 
e o ,  see Fig.1. The potential distribut- 
ions associated with such caps of char- 
ge will now be derived. 

Ea 

Fig. 1 

In [ 31  

Geometry of spherical caps of 
charge. 

it is shown that, for two axial- 
ly symmetric elemental ring charges dq 
and -dqlocatedat the interfacebetween 
media a and b as shown in Fig.2, the 
associated potential functions in the 
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I 

Fig.2 Location of ring charges at 
the interface. 

two media are given by 

where a is the polar angle subtended 
by dq and 

( 3 )  
4n+3 

A =  n (2n+2)za + (2n+l)Eb 

By integrating these elemental potent- 
ial functions over the spherical sur- 
face we can obtain the required solu- 

b' tions for 6 and 4 

From Fig.2, it can be readily deduced 
that the elemental ring charge is re- 
lated to the interface charge density 
a ( a )  by 

a 

.. 

On substitution for dq into the d@ ex- 
pressions, we find that the relevant 

integrals are express:ible in the form 

I = [ o ~ ( a )  sina P 2n+l (c!osa)da (5) 

0 

For an initial study, we will assume 
that there exists a constant surface 

such charge density, i . e .  a ( a )  = U 

that ( 5 )  reduces to 0 '  

Using the relationships obeyed by 
Legrendre polymonialn , we find that 

Consequently the associated potential 
distributions are 

where B is given by n 

(10) 
An 1 

Bn - 4n+3 - (2n+2)& + (2n+1)zb a 

E l e c t r i c  F i e l d  int B u l k  Medium 

In medium a, the ele'ctric field along 
the axis of symmetry reduces simply to 

Hence upon differentiating ( 8 )  we 
obtain 
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For the axis of symmetry 0 = 0 or 9 = 71 

and thus P (cos8) = 1 or -1, respect- 
ively . 2n+l 

If we discount the non-physical sing- 
ularity at the edge of the caps of 
charge, then the maximum field stren- 
gth E in medium a will occur at the 

poles of the void; e.g.  for r = R and 
t9 = 0. Hence for Eb E E o ,  we have 

ma 

As we are considering caps of charge 
with different surface areas, this im- 
plies that each cap represents a dif- 
ferent total charge. Hence to standard- 
ize each field calculation we will em- 
ploy the total charge Q associated with 
the respective cap of charge. Total 
charge Q(0 ) is given by 

0 

2 s"0 
Q = 27rR a(c!)sinc!dcu 

0 

Again for a ( 0 )  = U we have 
0 

(15) Q = 27rR (1 - COS6 ) a  0 0  

Substituting for Q enables E to be 

expressed with respect to the associ- 
ated Q. However to simplify further the 
resulting E -expression, we introduce 

an effective field parameter E given 

2 

0 ma 

ma 

Q 
by 

20 

EQ 18 
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0' Fig.3 Variation of E /E with 0 
ma Q 

ameter E is shown in Fig.3 as a 

function of cap angle 0 

It is evident that 8 has a pronounced 

influence upon E in particular for 

eo e 15O. In the limit, as eo + 0' each 

captends toapoin tchargeofmagni tudeQ 
such that Ema + co. 

The influence of increasing dielectric 
permittivity or bulk polarisation upon 
reducing E isalso broughtintofocus. 

malEQ 

0 '  

0 

ma' 

ma 

Discussion and Conclusion 

The wall charge field associated with 
the field in the bulk dielectric aug- 
m e n t s  the applied field. Thus the maxi- 
mum wall charge field E reflects the 

level of field enhancement encountered 
ma 

The variation of the dimensionless par- 
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in the bulk dielectric. 

From the study of spherical voids, it 
is shown that the spatial extent of a 
has a major influence upon E for 

eo e 15O. In contrast the influence of 
relative permittivity (1 5 E 5 6) be- 

comes more noticeable for 0 > 15'. 

In this initial study, the surface 
charge density has been taken as the 
independent variable. However, with re- 
ference to partial discharge activity, 
this is not the controlling parameter. 
Rather it is the internal field strength 
associated with the eventual quenching 
of the discharge development; i.e. the 
internal wall charge field has to ac- 
crue to such a magnitude that this pro- 
cess can occur. 

ma 

r 

0 

The internal field distribution is known 
to be strongly influenced by the spatial 
extent of the wall charge, e.g.  for 
eo = n/2 and U = U cos6 the internal 

field is uniform [3]. The other limit 
may be taken as the field between two 
point charges, see [ 4 ] .  With respect to 
the present study, the internal field 
is readily obtained from (9) . Hence the 
dependence of E on the spatial dis- 

tribution of the wall charge for con- 
stant Q must also be examined. Conse- 
quently, in future work itwill be nec- 

0 

ma 

essary to establish fu:Lly the relation- 
ship between the internal field and 
the wall charge density, prior to deter- 
mining the relevant field enhancement 
in the bulk dielectric; associated with 
partial discharge activity. This will 
obviously modify these preliminary re- 
sults. However, the general validity o€ 
the conclusions reached in this study 
should be substantiall-y upheld. 
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