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Linear optical absorption spectra of mesoscopic structures in intense THz fields:
Free-particle properties
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We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor
structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and
applied to the calculation of linear optical absorption spectrum for several nonequilibrium mesoscopic struc-
tures. We show that a blueshift occurs and sidebands appear in bulklike structures, i.e., the dynamical Franz-
Keldysh effect@A.-P. Jauho and K. Johnsen, Phys. Rev. Lett.76, 4576~1996!#. An analytic calculation leads
to the prediction that in the case of superlattices distinct stable steps appear in the absorption spectrum when
conditions for dynamical localization are met.@S0163-1829~98!03412-2#
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I. INTRODUCTION

Light absorption can be described in terms of a proc
where polarization is induced into the medium. To line
order in the electric-field component of the traversing lig
E, the induced polarizabilityP can be expressed in terms
the dielectric susceptibilityx as

P~ t !5E
2`

t

dt8x~ t,t8!E~ t8!.

If the absorbing medium is in a stationary state, the susc
tibility depends only on the difference of its time argumen
i.e., x(t,t8)5x(t2t8). Under these conditions Maxwell’
equation forE is an algebraic equation in frequency spa
and one finds that the absorption is proportional to the ima
nary part of x~v!. However, under nonequilibrium cond
tions, which are the topic of the present study, the susce
bility is a two-time function, and Maxwell’s equatio
remains an integral equation even in the frequency dom
Further progress hinges upon two steps: first, one has to
velop methods to calculate the nonequilibrium susceptibi
function, and, second, one has to specify what sort of lig
wave or pulse is used in the absorption experiment. T
present work addresses both of these problems. As far a
time dependence of the probe pulse is concerned, two
cific situations are examined. First, consider an undo
semiconductor placed in an intense THz field; we assu
that the THz field is not able to induce polarization, i.e.,
carriers are excited in the conduction band. Such a syste
in a nonequilibrium state, i.e., the susceptibility is a two-tim
function. Properties of such systems were investigated
perimentally using the free-electron laser~FEL! as a source
for intense THz fields;1 many interesting properties were di
covered, and others predicted, such as photon-ass
tunneling,2 dynamical localization and absolute negati
conductivity,3 the ac Stark effect,4 the dynamical Franz-
Keldysh effect, and the formation of sidebands.5–9 A second
570163-1829/98/57~15!/8860~13!/$15.00
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example consists of ultrafast transients. Consider an undo
semiconductor structure subject to an external intense s
field. At some time instant a population of carriers is pump
into the conduction band. These mobile charges will re
range themselves so as to screen the external field. While
screening is building up, the susceptibility of the system i
two-time function. Using femtosecond laser techniqu
which are able to probe the time scales in which screenin
building up, experiments investigating the nonequilibriu
properties of such systems have been performed.10,11

Band-gap engineering techniques of semiconductor c
pounds, such as molecular-beam epitaxy, allow spa
modulation of the band gap down to atomic resolution. It
possible to break the translational symmetries of bulk cr
tals, induce new ones, and reduce the degrees of free
with these techniques. Construction of systems which
effectively two dimensional~2D! and even one dimensiona
~1D! with regard to electron mobility and optical propertie
is today a standard procedure. Another example of s
manmade structures are superlattices~SL’s!, i.e., an engi-
neered periodic potential in the growth direction of t
sample. The interplay between the mesoscopic prope
and the dynamical properties can lead to many interes
phenomena such as absolute negative resistance for the t
port properties,12 and the rich features in the optical prope
ties which are the subject of the present work.

The purpose of this paper is to present a theoretical st
of light absorption in mesoscopic systems subject to inte
THz @far-infrared ~FIR!# fields. We consider undoped sys
tems, which implies that there are no carriers in the cond
tion band. Thus near-infrared~NIR! interband absorption is
the dominant absorption process. The nonequilibrium na
of the system necessitates the use of special theoretical t
we have chosen to apply nonequilibrium Green-funct
techniques.13,14 In particular, this method allows us to trea
the intense FIR field nonperturbatively, and defines a fram
work in which screening can be treated systematically. O
analysis consists of the following steps. Starting from a tw
8860 © 1998 The American Physical Society
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band Hamiltonian, we derive a formal expression for t
interband susceptibility in terms of nonequilibrium Gre
functions. Next, we use the general expression to derive
NIR absorption spectrum for noninteracting particles~Cou-
lomb interactions will be discussed in a subsequent pa
see also below!. Finally, we give explicit results for a num
ber of special cases~3D, 2D, and 1D systems and superla
tices! and discuss the physical implications. The relation
our work to previous papers addressing similar topics can
summarized as follows. Bulk systems were studied pre
ously in Refs. 5 and 6, where the relevant energy scales w
recognized, and the blueshift of the band edge~see below!
was predicted. The photonic subband structure, which is
essential feature of the present work, was not resolved, h
ever. Concerning absorption in superlattices, in a rec
work15 a detailed numerical study, using Monte Carlo me
ods, was presented. In the present work we are, by ana
means, able to explain the ‘‘surprising’’ emergence of sa
lite peaks in the spectrum which escaped explanation on
sis of the numerical work.

This paper is organized as follows. In Sec. II we derive
general expression for the two-time dielectric interband s
ceptibility. Section III relates the susceptibility to the me
sured absorption, considering both continuous-wave m
surements as well as short white light pulses. The sin
particle Green functions and the corresponding spec
functions, which determine the susceptibility, are defined
Sec. IV, and related to the generalized density of sta7

~GDOS!, which, in turn, is shown to determine the optic
absorption. Section V considers bulklike systems, and
obtain analytic results for the GDOS, which is analyzed
some detail in terms of the sideband picture. The proper
of light absorption in superlattices are treated in Sec.
Specific attention is paid to conditions where dynamical
calization occurs, and we show how it affects the absorp
spectrum. Finally, in Sec. VII we make some concludi
remarks.

II. DIELECTRIC INTERBAND SUSCEPTIBILITY

We shall now derive an expression for the dielectric
terband susceptibility using nonequilibrium Green functio
The microscopic operator describing interband polarizat
is

PW ~ t !5(
k

dW k@ak
†~ t !bk~ t !1bk

†~ t !ak~ t !#. ~1!

Here dW k is the dipole matrix element,ak
†(t) @ak(t)# are the

conduction-band electron creation~annihilation! operators,
and bk

†(t) @bk(t)# are the valence-band creation~annihila-
tion! operators. The linearized Hamiltonian associated wit
polarization PW (t) induced by the external fieldE(t) is
HP(t)52PW (t)•E(t). Linear-response theory now yields th
Cartesianl component of the induced interband polarizati
due to a weak external fieldE:

Pl~ t !52
i

\ E
2`

`

dt8u~ t2t8!^@PW ~ t8!,Pl~ t !#&•E~ t8!. ~2!
e
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The retarded susceptibility tensor can be identified from
~2!,

x lm
r ~ t,t8!52

i

\
u~ t2t8!^@Pm~ t8!,Pl~ t !#&. ~3!

Following the standard line of attack in nonequilibriu
theory,13 we first consider the causal~time-ordered! response
function

x lm
c ~ t,t8!52

i

\
^T$Pm~ t8!Pl~ t !%&, ~4!

whereT is the time-ordering operator. In nonequilibrium, th
causal response function is replaced by its contour orde
counterpartx lm

c (t,t8)→x lm
c (t,t8), where the complex-time

variablest andt8 reside on the Keldysh contour. Finally w
obtain the retarded tensor by an analytic continuation us
the Langreth rules.16

We use Eq.~1! to write the susceptibility as

x lm
c ~t,t8!52

i

\ (
qk

dl~k!dm~q!@^Tc$aq
†~t8!bq~t8!

3ak
†~t!bk~t!%&

1^Tc$aq
†~t8!bq~t8!bk

†~t!ak~t!%&

1^Tc$bq
†~t8!aq~t8!ak

†~t!bk~t!%&

1^Tc$bq
†~t8!aq~t8!bk

†~t!ak~t!%&#, ~5!

where Tc is the contour-ordering operator. In equilibrium
the two-particle correlation functions occurring in Eq.~5!
would be found via the Bethe-Salpeter equation.17 In what
follows, however, we shall consider the noninteracting lim
of Eq. ~5!. This approach is motivated by the following con
siderations. The noninteracting limit will allow significan
analytic progress, and the results, which we believe are
teresting in their own right, form the basis for an interacti
theory, to be reported elsewhere~see also below!. Second,
the experimental findings of absorption in quantum we
subject to intense FIR,18 can be largely understood on th
basis of the concepts presented here. A quantitative ass
ment requires a nonequilibrium theory for the two-partic
Green functions, i.e., a numerical solution of the nonequi
rium Bethe-Salpeter equation. We have recently comple
this program, and give our results in a subsequent paper.
noninteracting particles we can use Wick’s theorem to f
torize the two-particle correlation functions. Thus the no
equilibrium susceptibility can be expressed in terms
single-particle Green functions. The following Green fun
tions are needed:

gc~k,t;q,t8!52 i ^Tc$ak~t!aq
†~t8!%&, ~6!

gv~k,t;q,t8!52 i ^Tc$bk~t!bq
†~t8!%&, ~7!

gab~k,t;q,t8!52 i ^Tc$ak~t!bq
†~t8!%&, ~8!

and

gba~k,t;q,t8!52 i ^Tc$bk~t!aq
†~t8!%&. ~9!
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We assume that the frequencyV of the FIR field is such tha
\V!eg . In typical experiments on III-V systemseg is of
the order of an eV, while\V is a few meV, so this condition
is satisfied. Consequently, interband transitions due to
perturbing field can be ignored, and the Green functions
lated to the Zener effect, i.e.,gab(k,t;q,t8) and
gba(k,t;q,t8), are neglected from this on. The first-ord
nonequilibrium susceptibility thus reads

x lm
c ~t,t8!52

i

\ (
qk

dl~k!dm~q!@gc~k,t;q,t8!gv~q,t8;k,t!

1gv~k,t;q,t8!gc~q,t8;k,t!#. ~10!

The analytic continuation to real times is performed with t
Langreth rules,16 which state that if on contour

C~t,t8!5A~t,t8!B~t8,t!, ~11!

then the retarded function on the real-time axis is

Cr~ t,t8!5A,~ t,t8!Ba~ t8,t !1Ar~ t,t8!B,~ t8,t !. ~12!

We thus have

x lm
r ~ t,t8!52

i

\ (
k

dl~k!dm~k!@gc
,~k,t,t8!gv

a~k,t8,t !

1gc
r ~k,t,t8!gv

,~k,t8,t !1gv
,~k,t,t8!gc

a~k,t8,t !

1gv
r ~k,t,t8!gc

,~k,t8,t !#, ~13!

with

g,~ t,t8!5 i ^c†~ t8!c~ t !&, ~14!

ga~ t,t8!5 iu~ t82t !^$c~ t !,c†~ t8!%&, ~15!

gr~ t,t8!52 iu~ t2t8!^$c~ t !,c†~ t8!%&. ~16!

We recall the following relations:

@g,~ t,t8!#* 52g,~ t8,t !,

@ga~ t,t8!#* 5gr~ t8,t !, ~17!

@gr~ t,t8!#* 5ga~ t8,t !.

For certain applications, e.g., Sec. III A, it is convenient
introduce the center of mass variablesT5(t81t)/2 and
t5t2t8.19 In terms of these variables the symmetry re
tions of the Green functions are

@g,~T,t!#* 52g,~T,2t!,

@ga~T,t!#* 5gr~T,2t!, ~18!

@gr~T,t!#* 5ga~T,2t!.

The retarded susceptibility expressed in center-of-mass c
dinates is

x lm
r ~T,t!52

i

\ (
k

dl~k!dm~k!$@gc
,~k,T,t!gv

a~k,T,2t!

1gv
,~k,T,t!gc

a~k,T,2t!#2H.c.%. ~19!
e
e-

-

or-

Note that in equilibriumx lm
r (T,t)5x lm

r (t). As shown in
Sec. III A, the relevant quantity for continuous-wave me
surements at frequencyv l is

Imx lm
r ~T,v l !5ImH E

2`

`

dt eiv ltx lm
r ~T,t!J ~20!

to first order inV/v l ~hereV is the FIR frequency!. Now
x lm

r (T,t) is a real quantity, as is evident from Eq.~19!. Us-
ing the properties of the Fourier transform, we obtain

x lm
r ~T,v l !52

i

\ (
k

dl~k!dm~k!E
2`

` dv

2p
$gc

,~k,T,v!

3@gv
a~k,T,v2v l !1gv

r ~k,T,v1v l !#

1gv
,~k,T,v!@gc

a~k,T,v2v l !

1gc
r ~k,T,v1v l !#%. ~21!

Since x lm
r (T,t) is real, the imaginary part of its Fourie

transform is obtained through

Imx lm
r ~T,v l !5

1

2i
@x lm

r ~T,v l !2x lm
r ~T,2v l !#. ~22!

We can therefore write, in terms of the spectral functions

Ac~k,T,v!5 i @gc
r ~k,T,v!2gc

a~k,T,v!# ~23!

and

Av~k,T,v!5 i @gv
r ~k,T,v!2gv

a~k,T,v!#, ~24!

that

Imx lm
r ~T,v l !5

i

2\ (
k

dl~k!dm~k!E
2`

` dv

2p
$gc

,~k,T,v!

3@Av~k,T,v2v l !2Av~k,T,v1v l !#

1gv
,~k,T,v!@Ac~k,T,v2v l !

2Ac~k,T,v1v l !#%. ~25!

The lesser functions can be expressed in the form13

ga
,~k,T,v!5 i f a~k,T,v!Aa~k,T,v!, ~26!

where f a(k,T,v) is a generalized particle distribution fo
particles of speciesa, andAa(k,T,v) is the corresponding
spectral function. In accordance with our assumption ab
no FIR field-induced interband transitions, we can
f c(k,T,v)50 ~zero occupation of conduction band!, and
that f v(k,T,v)51 ~all valence states are occupied!. In the
general case, e.g., when considering nonlinear effects in
probing light field, one would have to findf a(k,T,v) via,
say, a Monte Carlo solution of semiconductor Blo
equations20,21 or by a direct integration of quantum kineti
equations forga

,(k,T,v).13 With these assumptions the su
ceptibility reduces to
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Im x lm
r ~T,v l !5

21

2\ (
k

dl~k!dm~k!E
2`

` dv

2p
Av~k,T,v!

3$Ac~k,T,v2v l !2Ac~k,T,v1v l !%

5
1

2\ (
k

dl~k!dm~k!E
2`

` dv

2p
Av~k,T,v!

3Ac~k,T,v1v l !. ~27!

The second equality comes about because we do not con
overlapping bands. Equation~27!, which is the central resul
c
e

-

t
t

t

sp
re

by
der

of this section, expresses the fact that the nonequilibri
interband susceptibility function can be calculated from
joint spectral function, which is a convolution of the indi-
vidual band spectral function. A similar result is known fro
high-field quantum transport theory:22 there the field-
dependent scattering rate is expressed as a joint spe
function for the initial and final states.

In order to make a connection to the equilibrium case,
recall the exact identitygeq

,(k,v)5 iaeq(k,v)n(v) ~n(v) is
the Fermi function!, and from Eq.~25! ~Refs. 17 and 23! we
obtain
Im x lm
r ~v l !52

1

2\ (
k

dl~k!dm~k!E
2`

` dv

2p
$nc~v!ac,eq~k,v!@av,eq~k,v2v l !2av,eq~k,v1v l !#1nv~v!av,eq~k,v!

3@ac,eq~k,v2v l !2ac,eq~k,v1v l !#%. ~28!
di-

e-
he

the

n;
ant

d

se
Herenc(v) is the conduction-band electron occupation fun
tion, and nv(v) is the corresponding function for th
valence-band electrons.

III. ABSORPTION COEFFICIENT IN TERMS
OF THE TIME-DEPENDENT DIELECTRIC

SUSCEPTIBILITY

The dielectric susceptibilityx links the induced polariza
tion P to the fieldE via

P~ t !5E
2`

t

dt8x~ t,t8!E~ t8!. ~29!

The wave equation for light is then

¹2E~ t !2
1

c2

]2D~ t !

]t2 50, ~30!

where D(t)5E(t)14pP(t). The absorption coefficien
a~v! is defined as the inverse of the length which light has
traverse in the medium at frequencyv in order for the inten-
sity of the light to decrease by a factor of 1/e. In equilibrium,
D(v)5@114px(v)#E(v)5e(v)E(v), and the absorption
coefficient19 becomes

a~v!54pv
Im x~v!

cn~v!
. ~31!

Heren2(v)5 1
2 @Ree(v)1ue(v)u# is the refraction coefficien

which usually depends only weakly onv. In nonequilibrium
this analysis must be generalized, and we consider two
cial cases:~i! monochromatic continuous wave measu
ments, and~ii ! white light short-pulse measurements.

A. Continuous-wave measurements

Consider a system out of equilibrium which is probed
a light field ~which is assumed to be weak! of frequencyv l :

E~r ,t !5E0 exp@ i ~rk2v l t !#. ~32!
-

o

e-
-

The polarization can then be expressed as

P~ t !5E~r ,t !E
2`

`

dt8eiv l ~ t2t8!x r~ t,t8!. ~33!

This form is suggestive: it is advantageous to expressx r

in terms of the center-of-mass and difference coor

nates,x r(t,t8)→ x̃ r@ 1
2 (t1t8),t2t8#. The characteristic time

scale for the center-of-mass time is set by the ‘‘slow’’ fr
quencyV, while the difference time varies on the scale of t
‘‘fast’’ frequency v l . We thus gradient expand

x̃ r@ 1
2 (t1t8),t2t8#. x̃ r(t,t2t8)1 1

2 (t82t) x̃ r 8(t,t2t8)1¯,
where the prime indicates differentiation with respect to
slow temporal variable. Substitution in Eq.~33! then yields
~we introduce a variablet[t2t8)

P~ t !5E~r ,t !E dt eiv lt@ x̃ r~ t,t!1~2 1
2 t!x̃ r 8~ t,t!1¯#

5E~r ,t !F x̃ r~ t,v l !1
]

]v l

]

]t

i

2
x̃ r~ t,v l !1¯ G

5E~r ,t !expF i

2

]2

]t]v l
G x̃ r~ t,v l !. ~34!

Equation ~34! can now be used in the Maxwell equatio
note, however, that upon Fourier transforming the domin
frequency comes fromE(t), and we can keept in x(t,v l)
fixed. The slow time variation will from this on be indicate
by T. Proceeding as in deriving the static result~31!, we
identify the time dependentabsorption coefficient

aT~v!54pv
Im x̃ r~T,v!

cnT~v!
1O~V/v!. ~35!

If the driving force is periodic inT ~the harmonic time de-
pendence due to a FEL laser is an important special ca!,
then the average absorption coefficient is
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ā~v!5
1

Tperiod
E

period
dT aT~v!

5
1

Tperiod
E

period
dT 4pv

Im x̃ r~T,v!

cnT~v!
~36!

to all orders inV/v. We stress that herex̃ r(T,v) is Fourier
transformed with respect to the difference variablet. Below
we shall represent numerical examples for the general
absorption coefficient.

B. Short white light pulse measurements

Consider now an instantaneous measurement perfor
on a nonequilibrium system: at some specific timet5tm the
system is probed with a weak pulse whose duration is s
compared to the characteristic dynamics of the system.
approximate the pulse withd function in time:

E~r ,t !5E0eirkd~ t2tm!. ~37!

In principle, construction of such a pulse would take infin
energy due to its time dependence. The pulse is there
hardly ‘‘weak.’’ When we refer to the pulse as weak w
assume thatE0!1; that is, the intensity of the light is sma
at all frequencies. Using Eq.~37! in the Maxwell equation
yields the dispersion relation

k25
v2

c2 @114px r~v,tm!#. ~38!

This dispersion relation looks quite similar to the one o
tained in Sec. II. The difference is that herex r(v,tm) is
Fourier transformed with respect tot8, not the difference
variablet. In the present case we obtain the time-depend
absorption coefficient

a t~v!54pv
Im x r~v l ,t !

cnt~v!
. ~39!

For examples of experiments which probe systems in
manner, see, e.g., Refs. 10 and 11.

C. Differential transmission spectrum

Consider a sample of thicknessL; then the ratio of the
intensity transmitted through the sample with its initial inte
sity is T(v)5exp@2ā(v)L#, where ā(v) is the absorption
coefficient of the sample. Experimental setups for measu
the change in absorption due to externally controlled per
bations commonly measure the differential transmiss
spectrum~DTS! defined by20

D~v!5
T~v!2T0~v!

T0~v!
. ~40!

HereT(v) is the transmission with the perturbation prese
and T0(v) is the transmission through the unperturb
sample. Below, we give examples ofD~v! in nonequilibrium
situations.
d

ed

rt
e

re

-

nt

is

-

g
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t

IV. SINGLE-PARTICLE GREEN FUNCTIONS
AND SPECTRAL FUNCTIONS

In this section we determine the single-particle Gre
functions and their associated spectral functions. We sh
that, under conditions specified below, that the convolutio
of the spectral functions, encountered in Sec. II, result
effective single-band spectral functions.

A. Single-particle Green functions

Let AW be the vector potential which defines the FIR fie
Considering harmonic, translationally invariant extern
fields, we choose

AW ~ t !52EW
sin~Vt !

V
, ~41!

which represents the physical uniform electric fie
EW cos(Vt). The two-band single-particle Hamiltonian for
system subject to the external FIR field can generally
written in the form

H5(
kW

H ecFkW1
e

\
AW GakW

†
akW1evFkW1

e

\
AW GbkW

†
bkWJ

1(
kW ,kW8

$FkW ,kW8@AW ~ t !#akW
†
bkW81H.c.%. ~42!

Here FkW ,kW8@AW (t)# describes the mixing of the bands due
Zener-like processes caused by the intense FIR field.
shall now argue that for realistic parameter values the mix
term can, in fact, be neglected. Leteg be the band gap
~eg.1.4 for bulk GaAs!. In order for the THz field to mix
the bands, i.e., to yield a finiteFkW ,kW8@AW (t)#, 2n-photon pro-
cesses have to occur withn5@eg/2\V#. ~Here@x# indicates
the integer part ofx.! Note that only even-order photon pro
cesses are allowed due to parity. In Ref. 7, we showed
the 2n-photon process carries spectral weig
2pJn

2(e f /2\V), wheree f5e2E2/4mV2 is the average clas
sical kinetic energy obtained by an electron placed in the F
field. Thus band mixing can be expected to be negligi
if J[ eg /\V]

2 (e f /2\V)!1. Considering typical frequencie

(\V.2, . . . ,20meV) and strongest THz fields that are a
tainable in FEL facilities,E.1 MV/m, one finds that the
argument of the Bessel function is of the order of uni
However, with these parametersn is of the order of a few
hundred, and sinceJm(x)!1 for x!m,28 we are indeed in a
regime where band mixing is of no consequence and
henceforth be neglected.

The Dyson equation for the retarded and/or advan
free-particle Green function is

S i\
]

]t
2eaFkW1

e

\
AW ~ t !G Dga

r /a~kW ,t,t8!5d~ t2t8!, ~43!

whereaP$c,v% is the band index. This equation is readi
integrated with the solutions
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ga
r /a~kW ,t,t8!57

i

\
u~6t7t8!

3expH 2
i

\ E
t8

t

ds eaFkW1
e

\
AW ~s!G J ,

~44!

and the spectral functionA5 i (gr2ga) becomes

Aa~kW ,t,t8!5
1

\
expH 2

i

\ E
t8

t

ds eaFkW1
e

\
AW ~s!G J .

~45!

B. Convolution of the spectral functions

According to Sec. II, the susceptibility is obtained throu
the trace of a convolution of the spectral functions. We sh
now show that within the present model the convolution
spectral functions results in an effective single-band spec
function.

In terms of the center of mass variables,t5t2t8 and
T5(t1t8)/2, we write the spectral functions as

Aa~kW ,T,v!5
1

\ E
2`

`

dt eivt

3expH 2
i

\ E
T2t/2

T1t/2

ds eaFkW1
e

\
AW ~s!G J .

~46!

Then the convolution

b~kW ,T,v l !5\E
2`

` dv

2p
Ae~kW ,T,v!Av~kW ,T,v2v l !

~47!

of the two spectral functions becomes

b~kW ,T,v l !5
1

\ E
2`

`

dt eiv lt expH 2
i

\ E
T2t/2

T1t/2

ds

3S ecFkW1
e

\
AW ~s!G2evFkW1

e

\
AW ~s!G D J .

~48!

In the case of parabolic bands we have

ec@kW #5
\2k2

2me
, ev@kW #52

\2k2

2mh
2eg . ~49!

Hereme is the electron mass,mh is the positive hole mass
andeg is the band gap. We define a single effective band
the system,

eeff@kW #[ec@kW #2ev@kW #5
\2k2

2meff
1eg , ~50!

where meff5memh /(me1mh) is the effective reduced mas
Thus the effective band is parabolic like the original ban
but with their reduced mass. It is therefore evident that
convolution, writing Aeff(kW,T,vl)5b(kW,T,vl), is a spectral
function for a parabolic band,
ll
f
al

r

,
e

Aeff~kW ,T,v!5
1

\ E
2`

`

dt eivt

3expH 2
i

\ E
T2t/2

T1t/2

ds eeffFkW1
e

\
AW ~s!G J .

~51!

In the case of tight-binding minibands for a type-I superl
tice ~with perioda!, we write the bands as

ec@kW #5
1

2
lc cos~aki!1

\2k'
2

2me
, ~52!

ev@kW #52
1

2
lv cos~aki!2

\2k'
2

2mh
2eg , ~53!

where lc is the electron miniband width,lh is the corre-
sponding bandwidth for the holes,ki is the~crystal! momen-
tum component parallel to the growth direction of the sup
lattice, and k' is the magnitude of the componen
perpendicular to the growth direction. The effective ba
thus becomes

eeff@kW #5
1

2
leff cos~aki!1

\2k'
2

2meff
1eg , ~54!

whereleff5lc1lv is the effective bandwidth, which again i
of the same form as the original bands. This shows that a
for superlattices the convolution~47! leads to an effective
spectral function of the original form.

In terms of the effective spectral function the imagina
part of the susceptibility can be written as

Im x lm
r ~T,v l !5

dldm

2\ (
kW

Aeff~kW ,T,v l !, ~55!

where we assume that the dipole matrix elements arek inde-
pendent. In equilibrium the trace of the spectral functi
yields the density of states for the system. Analogously,
GDOS ~Ref. 7! is defined as

r~T,v l !5
1

p (
kW

Aeff~kW ,T,v l !, ~56!

allowing us to write the absorption coefficient as

aT~v l !'
2p2v l udu2

cn\
r~T,v l !. ~57!

For the remainder of this work we shall investigate the pro
erties ofr(T,v l) for various systems. The concept of a tim
dependent density of states was discussed earlier in a spe
context in Ref. 24. Here we have made the definition rig
ous.

C. Gauge invariance

To conclude this section, we briefly comment on t
gauge invariance. From the outset, we might have chose
work within the gauge-invariant formulation which has be
developed in the field of high-field transport.25,26,13Consid-
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ering translationally invariant systems, correlation functio
are made gauge invariant with the transformation

kW→kW1
e

t2t8
E

t8

t ds

\
AW ~s!. ~58!

However, the absorption coefficient follows from a trace o
eration~56!, which makes the transformation~58! redundant:
a simple change of variables when performing the trace
does Eq.~58!, and proves that our formulation of the absor
tion is gauge invariant.

V. PARABOLIC BANDS

In this section we shall investigate the properties of
generalized density of states for systems which can be e
tively described by Hamiltonians yielding parabolic band
be it in one, two, or three dimensions. We write the effect
single-band dispersion as

e@kW #5
\2k2

2meff
1eg . ~59!

For convenience we writem5meff , and seteg50 which
shifts the energy axis such that the reference point is
band-gap energy. We calculate the generalized densit
states from

rnD~T,e!5E
2`

`

dt ei et/\rnD~T,t!, ~60!

where

rnD~T,t!5
1

\ E dnkW

~2p!n

3expH 2
i

\ E
T2t/2

T1t/2

ds eFkW1
e

\
AW ~s!G J .

~61!

With the vector potential~41!, one obtains explicitly that

rnD~T,t!5
1

\ E dnkW

~2p!n expH 2 i F ~ek1e f !t/\

12
e\kW•EW

mV2 sin~VT!sinS Vt

2 D
2

v f

V
cos~2VT!sin~Vt!G J . ~62!

Here ek5\2k2/2m, and we have defined the fundamen
energy scale, also recognized in Refs. 5 and 6,

e f5\v f5
e2E2

4mV2 . ~63!

The energye f can be interpreted classically in the followin
way: consider a classical particle with chargee and massm
subjected to an electric fieldEW (t)5EW cos(Vt). From New-
ton’s equation of motion one finds that the mean kine
energy of such a particle equalse f .27
s

-

n-
-

e
c-
,
e

e
of

l

c

In order to perform the Fourier transform~60! we utilize
the identity28

exp~ ix sin u!5(
n

Jn~x!exp~ inu!, ~64!

whereJn(x) are Bessel functions; we shall henceforth wr
(n[(n52`

` to simplify the notation. The generalized de
sity of states becomes

rnD~T,e!5(
l , j

E dnkW

~2p!n21 d@e2ek2e f1 l\V#

3J2 j S 2
ekW•EW

mV2 sin~VT! D Jl 1 j S v f

V
cos~2VT! D .

~65!

The dimensionality is entirely contained in the remaini
momentum integration*dnkW /(2p)n21. We note that Eq.
~65! implies a shift of the absorption edge bye f . The term
l\V in the Diracd function gives rise to photonic sideband
Since J2l(x) is an even function, the density of states
invariant under the transformationEW→2EW , as expected. In
the following subsections we shall consider the 1D, 2D, a
3D systems separately, and show how the density of st
smoothly evolves from a low-field intensity regime into
high-field intensity regime, making the nonlinear effects
the THz field apparent.

A. Generalized density of states, one dimension

The density of states for a single-mode 1D syst
~‘‘quantum wire’’! in the absence of external fields is

r0
1D~T,e!5

1

p S 2m

\2 D 1/2

e21/2u~e!. ~66!

In the presence of an external strong oscillating field, fro
~65! we obtain that the GDOS is

r1D~T,e!5(
l , j

E
2`

`

dk d@e2ek2e f1 l\V#

3J2 j SA32e fek

\V
sin~VT! D

3Jl 1 j S e f

\V
cos~2VT! D

5(
l

r l
1D~T,e2e f1 l\V!r0

1D~e2e f1 l\V!,

~67!

where the sideband weights are

r l
1D~T,e!5(

j
J2 j SA32e fe

\V
sin~VT! D

3Jl 1 j S e f

\V
cos~2VT! D . ~68!
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We note that, in the limite f→0,

r l
1D~T,e!→d l ,0 , ~69!

and r1D(T,e)→r0
1D(e), as expected. IfV is in the THz

regime, then most experiments would probe the tim
averaged absorption. The time average of the sideb
weights is calculated from

r̄ l
1D~e!5(

j
E

0

2p ds

2p
J2 j SA32e fe

\V
sin~s! D

3Jl 1 j S e f

\V
cos~2s! D , ~70!

which for l odd yields

r̄ l
1D~e!5(

j
E

0

2p ds

2p
J4 j 12SA32e fe

\V
sin~s! D

3J2 j 1 l 11S e f

\V
cos~2s! D , ~71!

and, for l even,

r̄ l
1D~e!5(

j
E

0

2p ds

2p
J4 j SA32e fe

\V
sin~s! D

3J2 j 1 l S e f

\V
cos~2s! D . ~72!

At the onset of sidebandl , the sideband weight is

r̄ l
1D~0!5 H 0

Jl /2
2 ~e f /\V!

if l odd
if l even, ~73!

where we used the identity28

E
0

2p

du J2l~a cosu!52pJl
2~a!. ~74!

This shows that processes involving an odd number of p
tons of the THz field are strongly suppressed. In Fig. 1
illustrate rave

1D(e) for a range of values ofe f /\V. In the
figures we writeee5\V. We observe all the signatures o
the dynamical Franz-Keldysh effect~DFK!:7 the Stark-like
blueshift of the main absorption edge bye f , the formation of
sidebands ateg1e f6N\V, and finite absorption within the
band gap.

B. Generalized density of states, two dimensions

Several authors considered fields perpendicular to
quantum well~cf. Ref. 29 and references therein!; here we
focus on the situation where the electric field is in the pla
of the two-dimensional electron gas. In such a system w
no external field, the density of states is constant,

r0
2D~e!5

m

p\2 u~e!. ~75!

With a harmonically oscillating field, we obtain, from Eq
~65!,
-
nd

o-
e

e

e
h

r2D~T,e!5(
l , j

E
0

`

dk kE
0

2p du

2p
d@e2ek2e f1 l\V#

3J2 j SA32e fek

\V
cosu sin~VT! D

3Jl 1 j S e f

\V
cos~2VT! D . ~76!

The integrals in Eq.~76! are again performed using Eq.~74!,
and writing the result in the sideband picture, we obtain30

r2D~T,e!5(
l

r l
2D~T,e2e f1 l\V!r0

2D~e2e f1 l\V!,

~77!

where the sideband weights are

r l
2D~T,e!5(

j
Jj

2SA32e fe

\V
sin~VT! D Jl 1 j S e f

\V
cos~2VT! D .

~78!

Identical arguments as in the 1D case lead to

r̄ l
2D~0!5 H 0

Jl /2
2 ~e f /\V!

if l odd
if l even, ~79!

i.e., the same result as in the 1D case.
As in the 1D case, we have numerically investigated

time averaged GDOSrave
2D(e)5 (V/2p) *0

2p/VdT r2D(T,e).
In Fig. 2 we illustraterave

2D(e) for various values ofe f /\V.
Again, as in the 1D case, we observe all the characteristic
the DFK.7 Finally, Fig. 3 shows the DTS signal.

C. Generalized density of states, three dimensions

Absorption in bulk semiconductors subject to THz rad
tion was considered a long time ago by Yacoby,5 and later by
Rebane.6 These papers studied transition rates between ba
by investigating approximate solutions to the correspond
time-dependent Schro¨dinger equation. Reference 5 con

FIG. 1. Time-averaged generalized density of states for a
system shown for a range of FIR intensities,e f /\VP@0,2#. The
band edge and the sidebands display a blueshift, which scales
early with the intensity. Absorption extends below the band g
~dynamical Franz-Keldysh effect!.
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cluded that transitions occur in the gap, and noted redu
rates above the gap, in agreement with the present w
while Ref. 6 pointed out that the absorption egde would
shifted, likewise in agreement with our work. The 3D fiel
free density of states is

r0
3D~e!5

1

2p2 S 2m

\ D 3/2

u~e!e1/2. ~80!

With the external field the density of states becomes

r3D~T,e!5(
l

r l
3D~T,e2e f1 l\V!r0

3D~e2e f1 l\V!,

~81!

with the sideband weights

FIG. 2. The time-averaged GDOS for a 2D system for a rang
FIR intensities,v f /V5(0.0,0.2,0.8,1.4,2.0). At low intensities on
observes a Stark-like blueshift of the band edge, as well as fi
absorption within the band gap. With increasing intensity, si
bands emerge ate5eg1e f62\V.

FIG. 3. The DTS signal for a 2D system for a range of inten
ties,v f /V5(0.2,0.8,1.4,2.0).
ed
k,
e

r l
3D~T,e!5(

j
Jl 1 j S e f

\V
cos~2VT! D

3E
0

1

dh J2 j SA32e fe

\V
sin~VT!h D . ~82!

Again, we have

r̄ l
3D~0!5 H 0

Jl /2
2 ~e f /\V!

if l odd
if l even. ~83!

In Fig. 4 we illustraterave
3D(e) for various values ofe f /\V;

the DTS signal for the 3D case is shown in Fig. 5.

D. Summary

The main physical consequences of the THz field on
linear absorption spectrum for systems with parabolic disp
sion can be summarized as follows. The dynamical mod
cations of the absorption spectrum~i! appear near the absorp
tion edge,~ii ! extend a fewee5\V around the edge, and
~iii ! are most pronounced whenv f /V is of order unity.

If V is in the THz regime, and fields like those attainab
with free-electron lasers are considered,2,31 then v f /V'1

f

te
-

-

FIG. 4. The time-averaged generalized density of states for a
system for a range of FIR intensities,v f /V5(0.0,0.2,0.8,1.4,2.0).

FIG. 5. DTS spectrum for a 3D system.
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and the fine structure extends over an area of several m
Consequently, an experimental verification of these effe
should be possible.

VI. SUPERLATTICES

According to the semiclassical Bloch-Boltzmann theo
of transport, a uniform electric field causes charge carrier
a periodic potential to execute a time-periodic motion w
frequencyvB5eaE/\, where a is the lattice periodicity.
Conditions for observing these Bloch oscillations are mu
more favorable in superlattices than in ordinary bulk mate
als, and recent years have witnessed an intense researc
fort culminating in the observation of Bloch oscillations.32 In
ac fields a phenomenon called dynamical localization m
occur: if the parameterg[aeEi /\V equals a zero ofJ0 , the
average velocity vanishes.33 In this section we investigate
how dynamical localization4,33–36manifests itself in the free
particle absorption spectra. Recently, Meieret al.15 presented
results of a detailed numerical solution of the semiconduc
Bloch equations, including excitonic effects, and found t
at dynamical localization the relative motion exciton wa
function changes from a 3D character~i.e., localized inkz
space! to a 2D structure~extended inkz space!, and below
we shall illustrate how the same phenomenon reflects it
in the present analytic study of free-particle properties.

A. Generalized density of states

The starting point for our analysis is the effective disp
sion ~54! introduced in Sec. IV B, which we reproduce he
for the convenience of the reader:

eeff@kW #5
1

2
leff cos~aki!1

\2k'
2

2meff
1eg . ~84!

Henceforth we puteg50, and drop the ‘‘eff’’ subscript. We
consider the effect of the THz field described by the vec
potential AW (t)52EW sin(Vt)/V, where EW 5(0,0,Ei). In ac-
cordance with Sec. IV, we calculate the generalized den
of states from

rsl~T,t!5
m

2p2\3 E
0

`

de'E
0

2p/a

dkie2 i e't/\

3exp@2 i I ~T,t!#, ~85!

I ~T,t!5
l

2\ E
T2t/2

T1t/2

ds cos@aki1g sin~Vs!#. ~86!

We evaluate the integral within the exponential using id
tity ~64!, with the result

I ~T,t!5
l

2\V H cos~aki!FC~Vt!1J0~g!
lt

2\ G
1sin~aki!S~Vt!J , ~87!

where
V.
ts

in

h
i-
ef-

y

r
t

lf

-

r

ty

-

C~z!52(
n51

`
J2n~g!cos@2nVT#

n
sin@nz#, ~88!

S~z!52(
n51

`
J2n21~g!sin@~2n21!VT#

n21/2
sin@~n21/2!z#.

~89!

We have suppressed the explicit dependence ofVT andg in
C(z) andS(z) for simplicity. Note that both of these func
tions are antisymmetric inz, i.e., C(2z)52C(z) and
S(2z)52S(z). The identity28

E
0

2p du

2p
exp$ ia cosu1 ib sin u%5J0~Aa21b2! ~90!

is the key to the next step in the evaluation of Eq.~85!, and
allows us to write

rsl~T,t!5
m

2p2\3a E
0

`

de'e2 i e't/\K~Vt! ~91!

where we have defined the kernel

K~z!5J0S l

2\V
A@C~z!1J0~g!z#21S2~z! D . ~92!

Also here, we have suppressed the explicit dependenc
VT andg. In a distribution sense we can write

E
0

`

de'e2 i e't/\5
2 i\

t2 i01 , ~93!

where 01 indicates a positive infinitesimal. This expressio
allows us to compute the Fourier transform of Eq.~91!,

rsl~T,e!5
m

2p2\2a S E
2`

`

dt
sin~et/\!

t
K~Vt!1p D .

~94!

In what follows we shall examine several properties of t
result.

B. Field-free limit

In the limit of vanishing field strength we have

lim
g→0
K~z!5J0S lz

2\V D . ~95!

Using the identity28

E
2`

` dx

x
sin~bx!J0~x!5H p

2 arcsinb
2p

@b.1#

@b2,1#

@b,21#,
~96!

we obtain the density of states for a tight-binding super
tice,
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rsl~e!5
m

p\2a H 1
1

p
arcsin~2e/l!11/2

0

@e.l/2#

@ ueu<l/2#

@e,2l/2#,

~97!

which is familiar.

C. Static limit

In the limit V→0 one obtains

lim
V→0

K~Vt!5J0S l

2\vB
sin~vBt! D . ~98!

Recalling the identities28

J0~z sin a!5(
j

Jj
2~z/2!cos~2ka! ~99!

and

E
2`

`

dx cos~ax!sin~bx!/x5p@u~a1b!2u~a2b!#,

~100!

we obtain the density of states

rsl~e!5
m

p\2a (
j

Jj
2S l

4\vB
D u~e12 j \vB!. ~101!

This result coincides with the one obtained in Refs. 37 a
38, which studied both theoretically and experimentally
effects of strong static fields on the absorption in superlat
structures. They concluded that the steplike behavior
~101! is due to localization in the growth direction~Wannier-
Stark localization!.

D. Dynamic localization

As seen in Sec. IV C, the signature of localization in t
growth direction in a superlattice is a steplike behavior of
density of states. This is intuitively clear since the density
states for a 2D system@Eq. ~75!# is constant. We therefore
expect the density of states to be composed of a step func
for each well the states extend into, with weight relative
the occupation in that particular well. We shall now sho
that if J0(g)50, i.e., the conditions for dynamical localiza
tion are met, then GDOS indeed is of this kind. The arg
ment runs as follows. IfJ0(g)50 then kernel~92! is peri-
odic in z with period 2p. Furthermore, the kernel is an eve
function:K(z)5K(2z). We can therefore formally write

K~Vt!5(
j
Kj cos~kVt!,

which is of the same functional form as in the static lim
@Eq. ~98!#. Consequently, we may conclude that the gene
ized density of states must be of the form

rdyn. loc
sl ~e!5

m

p\2a (
j
Kju~e1 j \V!, ~102!
d
e
e
f

e
f

on

-

l-

i.e., it is a superposition of step functions. The weightsK j ,
however, must be evaluated numerically, and examples
given in Sec. VI E. It is important to note that the ‘‘ste
length’’ in the ac case is determined by the frequency of
THz field, in contrast to the static case, where it is det
mined by the field strength. The field strength enters
density of states only through the weight factorsK j .

Result~102! suggests that it should be possible to pro
dynamic localization by photoabsorption: when the approp
ate conditions are approached, the absorption coeffic
should change qualitatively from a generic smooth behav
to a sharply defined steplike structure. The number of d
tinct steps appearing in the spectrum is determined by
ratio l/\V, which is also a measure of the number of we
the localized states span. This is fully consistent with
results of Ref. 15, whose authors considered a miniband
width l521 meV and a FIR frequency\V520 meV,
which essentially allows just one step, and hence a maxim
binding energy of the corresponding exciton which would

FIG. 6. The time averaged GDOS for a superlattice with eff
tive bandwidthl53.4\V. The proximity of dynamical localization
occurring atg52.4048 . . . reflects itself in the stepwise structure o
the dashed curve.

FIG. 7. The time-averaged GDOS for a superlattice w
l53.4\V as a function of FIR intensity. At lowg, sidebands are
observed, which merge atg52.4048 . . . , corresponding to dy-
namical localization.
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mostly confined to a single well. Interestingly, Eq.~102! sug-
gests an interpretation of the feature at 1534 meV, wh
Meier et al. found ‘‘unexpected:’’ in our picture it is the
photon replica of the main exciton peak; since this occur
.1552 meV and the photon energy is 20 meV, the agr
ment is very good indeed.

E. Numerical results

We again focus our numerical study to the time-avera
generalized density of states

rave
sl ~e!5~V/2p!*0

2p/VdTrsl3~T,e!.

In Figs. 6 and 7 we show the absorption spectra for a su
lattice with an effective bandwidthl53.4\V. The numeri-
cal results confirm the expectations of Sec. VI D: wh
g5aeEi /\V approaches the first zero ofJ0 , which occurs
at the argument value of 2.4048 . . . , thegradually evolving
replicas of the zero-field density of states converge into p
teaus of finite width. The exactness of the plateaus can
judged from Fig. 7: atg52.4048 . . . , theline joining the
the steps appears near vertical. Finally, in Fig. 8 we show
DTS spectra at dynamical localization~DL! and non-DL
conditions. There are two characteristic differences:~i! Out-
side the zero-field miniband, DL leads to a steplike struct
in contrast to the smooth behavior found otherwise; and~ii !
inside the miniband the DL spectrum distinguishes itself
its sharp jagged structure.

VII. CONCLUSIONS

We have presented a theoretical formulation of line
photoabsorption for samples under strongly nonequilibri
conditions. Typical nonequilibrium agents would be THz r
diation from free-electron lasers, or ultrashort pulse meas
ments of transient effects. In the present work noninterac
carriers are considered, but the formulation allows an ex
sion to Coulomb interactions, which will be addressed in
s
n

f.
h

at
e-

d

r-

-
be

e

e

y

r

-
e-
g
n-
a

subsequent paper. Two central concepts emerge from
analysis: a generalization of the density of states into tim
dependent conditions@the GDOS defined in Eq.~56!#, and
photonic sidebands~i.e., photon replicas!, which form a con-
venient framework for discussing the various features of
absorption spectra.
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FIG. 8. The differential transmission signal for a superlatt
structure with an effective minibandwidthl58\V. Outside the
zero-field miniband, a steplike behavior is seen, while inside
miniband DTS for dynamical localization develops a jagged sh
in contrast to the smooth behavior for the extended state.
ett.

-
n-
ed
en
1J. Cerneet al., Phys. Rev. B51, 5253~1995!.
2P. S. S. Guimara˜eset al., Phys. Rev. Lett.70, 3792~1993!; B. J.

Keay et al., ibid. 75, 4098~1995!.
3B. J. Keayet al., Phys. Rev. Lett.75, 4102~1995!.
4M. Holthaus and D. W. Hone, Phys. Rev. B49, 16605~1994!.
5Y. Yacoby, Phys. Rev.169, 610 ~1968!.
6Yu. T. Rebane, Fiz. Tverd. Tela~Leningrad! 27, 1364 ~1985!

@Sov. Phys. Solid State27, 824 ~1985!#.
7A.-P. Jauho and K. Johnsen, Phys. Rev. Lett.76, 4576~1996!.
8J. Konoet al., Phys. Rev. Lett.79, 1758~1997!; J. Konoet al., in

Proceedings of the 23rd International Conference on the Physic
of Semiconductors, edited by M. Scheffler and R. Zimmerma
~World Scientific, Singapore, 1996!, p. 1911.

9B. Birnir et al., Phys. Rev. B47, 6795~1995!.
10H. Heeselet al., Phys. Rev. B47, 16 000~1993!.
11F. X. Camecasseet al., Phys. Rev. Lett.77, 5429~1996!.
12For a recent theoretical paper modeling the experiments of Re

see, e.g., A. Wackeret al., in cond-mat/9612035~unpublished!,

3

where other relevant work is also cited.
13H. Haug and A.-P. Jauho,Quantum Kinetics in Transport and

Optics of Semiconductors~Springer, Berlin, 1996!.
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