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Breatherlike excitations in discrete lattices with noise and nonlinear damping
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Magnus Johansson and Kirh Basmussen
Department of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark
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We discuss the stability of highly localized, “breatherlike,” excitations in discrete nonlinear lattices under
the influence of thermal fluctuations. The particular model considered is the discrete nonlineafirgehro
equation in the regime of high nonlinearity, where temperature effects are included as multiplicative white
noise and nonlinear damping. Numerical analysis shows that the lifetime of the breather is always finite and,
in a large parameter regime, inversely proportional to the noise variance for fixed damping and nonlinearity.
We also find that the decay rate of the breather decreases with increasing nonlinearity and with increasing
damping. Using a collective-coordinate approximation, we show how the qualitative features of the numerical
results can be analytically understood. Finally, in the dimer case we show that the multiplicative noise can be
transformed into additive noise, and an exact stationary solution to the Fokker-Planck equation is obtained.
From this solution, the dimer system is found to exhibit a ndieenperaturg induced phase transition.
[S0163-18207)07409-2

l. INTRODUCTION to add white noise and damping to the lattice equatt6né
thereby turning these into Langevin equations. As was
The existence of highly localized, time-periodic solutionsshown in Ref. 16, the coupled exciton-phonon equations can
in lattice equations with large nonlinearity is by now a well under certain approximations be reduced to a single DNLS
established fact.? These solutions have been terniettin- equation describing the exciton dynamics, where the effects
sically localized modesreflecting the fact that no external Of thermal fluctuations of the phonons appear as a multipli-
defects are needed for their creationgicrete breathersn ~ Cative noise term. The spectrum of the noise will then in
analogy with the well-known solutions to integrable nonlin- 9neral be colored, but by assuming short correlation times,
ear partial differential equations, which have similar proper-t can be treated as white in a first approximation. However,
ties. In the particular case of the one-dimensiciia) dis- as was recently showt,in order to take proper account of

crete nonlinear Schainger(DNLS) equation, which will be thﬁ dzatrﬁplng.tof th? phonon .SyStt?m’.'t |Salr£cels$a}tytlaa§t
considered in this paper, the creation of these modes is ajjnen the White-noise approximation s madiza so inciude

. ; a nonlinear damping term in the exciton equation. With this
example of t_@e well-l_<nowrd|_sc_r_ete self-t_rapplng(DS'l_') inclusion, it was shown that under certain conditions an en-
phenomenonr;’ by which an initially localized excitation

) . o ) . ergy balance may be established in the exciton system.
remains localized around the initially excited site for all 9y y y

. . . . . In this paper, we will consider the 1D DNLS equation
times. For this reason, a class of equations including thg;ih myltiplicative noise and nonlinear damping included,

DNLS equation has also been termed the DST equdtiongng investigate how the inclusion of these terms affects the
The DST phenomenon has been used to model energy locajiscrete breathers. The restriction to 1D is mainly for nu-
ization in a large number of physical contexts, such as pomerical convenience; similar results are expected also in two
laron formation in electron-lattice coupled systefriscal-  and three dimensions. Results for the numerical integration
ization of vibrational energy in proteirfsand localization of  of the resulting system of stochastic differential equations
optical beams in nonlinear waveguide arrdy3he discrete  are discussed in Sec. I, while in Sec. Il a collective-
breathers have also been foutid®to play an important part coordinate approach is used to obtain approximate analytical
as final states in the “quasicollapse” process, which is theresults. In Sec. IV we discuss the particular case when the
discrete analog to the ordinary collapse phenomenon occusystem only contains two sit¢ie DNLS dimey, for which

ring in the continuum nonlinear Schdimger(NLS) equation  some exact analytical results can be obtained. Finally, Sec. V
in dimensions larger than 1 or with higher degreecontains some concluding remarks.

nonlinearities* Since the 2D DNLS equation also has been

used to describe exciton dynamics in _modGeIs for so-called Il. NUMERICAL ANALYSIS
Scheibe aggregates in molecular thin fillAs® the discrete _ _ _
breathers may be of importance also in this context. The form of the DNLS equation to be considered here is

A frequently used method to take into account effects of q
finite temperature in models describing a quantum quasipar- : ° 2 2
. o . . - . . . 1+ J +n_q)+ - - t
ticle (electron or excitoninteracting with lattice vibrations is Yt I(neat o)+ YUl Y= 7 dt 1¢n(DI]

0163-1829/97/58)/57598)/$10.00 55 5759 © 1997 The American Physical Society
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+hy(t) =0, (1) A
where the last two terms describe nonlinear damping and [
multiplicative Gaussian white noise, respectively. The noise

is assumed to have zero mean and variargiz., 05r
(hy(1))=0, (h,(H)h, (t"))=2DS(t—t")Snn. (2 0
As was shown in Ref. 19, Eq1) can be derived from the 500600
following equations modeling a quasipartidle.g., electron
or excitor) interacting with an optical phonon field in contact 1000
with a heat batkin units with #=1): n 1800 560
[ ';//n+3(¢n+1+ Yn—1)+ xUn,=0, (3 FIG. 1. Time evolution of an initially single-site localized exci-

tation. Parameter values aye=-10, »=2, andD =0.05.
M+ MUy + M agun = x| nl?= 7a(1). @) R
, . L tained by the rescaling—yN, n—nN). Furthermore, we
Here ¢, is the complex amplitude of the quasiparticle wave yafine the energyor time) scale by fixing the hopping con-

;uncélon at siten and '“r']“ represents Lhe elastic de_grﬁke)z of stant toJ=1. Finally, we choose the initial condition to be a
reedom at siten. Furthermore,J is the nearest-neighbor g oo dite excitation at sitey, i.e.,

hopping constanty is the coupling constant between the
guasiparticle and the phonorid, is the molecular mass, is

a damping coefficientw is the Einstein frequency of each
oscillator, andzn,(t) is a stochastic force acting on the pho-
non system. The variance of the stochastic force should b,
related to the temperature and the damping coefficient

‘pn(o):an,no- 9

ith this choice of initial condition, it has previously been
ouncd®’?° that in the absence of noise and damping the

according to the fluctuation-dissipation theorem in order toDNLS equation exhibits a self-trqpp_mg {ransition _yvhen
drive the system into thermal equilibrium. Under the as-”:%fg.'& so that wheny>1y, the initial-site probability
sumptions made in Refs. 16 and 19, the most important bel—‘/’“ol will always be nonzero. Ay is increased beyong,

ing that the quasiparticle field should vary slowly in time the total norm of the excitation trapped around the initial site
compared with the lattice vibrations, E() was obtainetf ~ increases and the width of the excitation decreases. In the

with the following relations between the parameters: calculations reported here, we consider nonlinearijies,
for which the trapped excitation has a highly discrete breath-

e erlike nature(for y=5, the breather is mainly localized on
Y= M_wg* =Y w_g- D= nkgT, (3 the initial site and its two neighboring sites, and the station-
ary value of the initial-site probability in the absence of noise
wherekg is Boltzmann’s constant. and damping is found to be approximately 0.77

It is important to note that also in the presence of noise An illustration of how the presence of noise in Ed)
and nonlinear damping, the DNLS equatidn still has one  affects the DNLS breather is given in Fig. 1. As the figure
conserved quantity, namely, the nofexcitation numberA”  shows, the main effect of the noise is initially to cause a slow

of the solution defined as decrease of the breather amplitude. This slow decrease con-
tinues until the initial-site probability has reached approxi-
NZE 2. 6) mately half of its initial value, at which point the breather is
n rapidly destroyed. The long-time behavior is then found to

be diffusive, similar to what is seen in the linear system
(y=0). The result presented in Fig. 1, as well as all other
y numerical results reported here, has been obtained by nu-
H=—3 (nth’ 1+ ¥ i) — = > ||, (7)  merical integration of Eq(1) using a stochastic version of

n 2 % the fourth-order Runge-Kutta-Merson algoritiif? making

which is the second conserved quantity for the unperturbe§U"® that the statistical properties of the solution remain in-
DNLS equation, will in the presence of noise and dampingYariant under changes of the size of the time steps.

as in Eq.(1), no longer be conserved. Instead, its time evo- By a syster_natic investigation of the numerical solutions
lution will be determined by to Eq. (1) for different values ofy, », andD, we have found

that the behavior shown in Fig. 1 appears to be generic. The

2 d lifetime of the breather is always finite, but increases when
+ 2 hy(t) gt (I¢nl®. (8)  (a) the nonlinearityy is increased(b) the nonlinear damping

: nis increased, ofc) the noise varianc® is decreased. This
Considering the ensemble average of this equation, we findan be seen from Fig. 2, which shows some typical examples
that the damping and noise terms will in average provideof how the initial-site probability varies with time for differ-
dissipation and input of energy to the system, respectively.ent values of the parameterdn all cases, we have made

In our numerical simulations, we have without loss of sure that the system size is large enough, so that boundary
generality chosen the guasiparticle wave function to be noreffects can be neglected in the time regime shown in the
malized, i.e.,N'=1 (results for arbitrary\" are simply ob- figures) The typical scenario is the following: After a short

However, the Hamiltoniart, defined as

dH d
Ez—ﬂ; (a (¢al®
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probability rapidly drops to values close to zero, and the
breather is destroyed. From this point on, the system behaves
approximately as a linear systefie., diffusively), and the
initial-site probability decays in average 85" just as for

an ordinary random-walk process.

The results from a more quantitative numerical analysis of
the decay rate of the breather as a function of the parameters
v, m, and D, obtained by averaging over differ-
ent realizations of the noise, are displayed in Fig. 3. The
decay rate x is here defined as the mean value of
(—d/dt)(lz,bno|2) in the time interval of almost linear decay.

[From the values of«, the approximate lifetime, of the
breather can then be obtained ®gs-1/(2«), as discussed
0 0 100 ;'50 200 above]_ _From the resul_ts shown in Fig.(&, as well as
t from similar results obtained for a number of other values of
the parameters, we conclude that the decay rate appears to be
proportional to the variance of the noise over a large param-
eter region(Although no error bars are plotted in Fig. 3, we
estimate the maximum error in each data point to be approxi-
mately 5-10 %. The errors are mainly due to the computa-
tional limits of the number of samples used in the averaging
procedures. We found this proportionality to be valid as
long as the noise is weak enough not to affect the creation of
the breather considerablyhe upper limit onD for this re-
gime depends ory and 7). If the noise is too strong, no
breatherlike state will be created, and the diffusive spreading
starts immediately.
Also, as is shown in Fig.(®), the decay rate is for fixed
- D and 7 approximately proportional ta/ 2 in the studied
0 50 10 %0 200 280 300 parameter range, while the data in Figc)3showing the
variation of k with » do not seem to follow any simple
scaling law. As we will see in the next section, the numeri-
cally found dependence of the decay ratelband y agrees
qualitatively with the approximate analytical results that can
be obtained using the method of collective coordinates.

2
W,

lno® 05 ¢

04

0.8

0.7

06 ¢ Ill. COLLECTIVE COORDINATE APPROACH

P o5
oo In this section, we will use the method of collective coor-
dinates in order to gain some analytical understanding for
how the presence of noise and nonlinear damping will affect
the breather solutions to E¢l). The starting point of this
method is to choose a localized self-similar trial function
‘ M bt st s g o e which is close to the exact solution in the absence of noise
0 50 100 150 200 250 300 and damping, and contains a humber of parameters which

t become time dependent due to the perturbations. In our case,
we find a trial function of the form

04
03
02

0.1 |

FIG. 2. Typical time evolution of the initial-site probability for
some different values of, %, andD. In (a) we haver=0, D =0.05, y (1) =A(t)€ a(tyn®=B(t)|n| (10)
and from bottom to top/=5, 10, 15, and 20; iitb), y=5, D=0.05, "
and from bottom to top=0, 1, 5, and 10; inc), =5, #=1.0,and o pe appropriate. Here the parametedetermines the com-
!D=Q.005, 0.025_, an_d 0.05 from _top to bottom. The particular real-p|ex amplitude of the wave function, while the real param-
ization of the noise is the same in all cases. etersa and B8 determine the phase chirp and width of the

s . . wave function, respectively(The initial site is here chosen
initial time interval, where the breather is created andfor convenience asi,=0, without loss of generality.This

|#n,|? rapidly drops to a value close to its stationary value iNcpgice of trial function is motivated by the fact that in the
the absence of noise, the initial-site probability decays alapsence of noise, the exact stationary breather solution to Eq.
most linearly with time(this is seen even more clearly if (1) becomes exponentially decaying in the high-nonlinearity
averaging over different noise realizations is perfor)'nEd |’egi|"r|e_2 Thus, with =0, our trial function approaches in
This linear decay continues until the value| ¢f, |* has been  the limit of large nonlinearity the exact breather solution to
reduced by approximately a factor 1/2, when the initial-sitethe noise-free DNLS equation. The particular form of phase
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after its creation, i.e., when the decoherence caused by the

0.025 . . . .
@ ¥=5 —— noise is still small enough to be neglected. Using the normal-
P10 e ization condition V=1, with N defined as in Eq(6), the
0.02 | . relation between the parametésand 8 is found to be
|A(D)]?=tanh3(1). (11)
0.015 +
. In order to derive differential equations determining the
time evolution of the remaining two independent parameters,
0.01 r ] we choose to work with the variabtginstead ofg3, whereq
is defined as
0.005 | s 1
e q(t)= 2SnB(0)” (12
0 0”‘ 0_52 0.64 o.loe 0.68 oi1 We will first consider the case when the nonlinear damping
D n is zero. In this case, we can use the Lagrangian
0.1 i ) :
L=5 2 (ot~ ¥ ) 32 (st U dinsd)
Y
0.01 ] +t3 ; |‘//n|4+; hn(t)| ¥, (13
« to derive a pair of coupled first-order differential equations
for @ and g using the Euler-Lagrange equations. After a
0001 | | subsequent transformation of the noise term, which leaves
' the Fokker-Planck equation for the relevant probability den-
sity invariant and therefore gives an equivalent description of
the processgsimilar transformations were performed in Refs.
19 and 25, the two equations take the form
0.0001 R :
s 0, 20 - 2JV2q sine 1+4q-2q sirfa 14
o - Ji+2q (1+2gsirfa)®
'Y: ——
© Y10 -+ . 2
. 2J coda)(1-2q sifa—8g%sirfa) 7y (2+Qq)
o= _
V2q(1+29)%3(1+2q sirfe)? 2 (1+29)°
- +1/ 3*a h(t 15
. 2(1+2q)72 ()a ( )
where the noisé(t) now only depends on time and has the
0.001 | autocorrelation
(h(t)h(t"))=2Ds(t—t"). (16
“ We note that the variables and q are canonically conju-
0.0001 : : : ) ' ' s ; : gated, in the sense that with the Hamiltonfdrdefined as in
o 2 4 6 8 1no 1214 16 18 20 Eq (7), Egs.(14) and(15) can be written as
FIG. 3. Quantitative dependence of the decay rate of the . JH . JH [ 3+q
breatherx as a function of(a) noise strengtiD, (b) nonlinearity =2, ¢~ ﬁ"’_ 2(1+2q)™? h(), (17

parametery, and(c) nonlinear damping parameter In (a), =0.1
for both curves, and iric), D=0.05 for both curves; other param- where
eter values are as indicated in the figures.

2J\2q cosx vy 1+q
chirp included in Eq(10) was mainly inspired by previous (1+2q sirfa)y1+2q 2 (1+2q)

work on the continuous NLS equation, where collective co-

ordinate approaches using this kind of phase chirp have We can now also include the nonlinear damping in the
turned out to be successft#t?>1°In the presence of weak collective-coordinate equatiord7), by using the fact that
noise, we can expect EGL0) to give an approximate repre- the Hamiltonian should fulfill the conservation lai8). By
sentation of the breather in the time regime following shortlyexplicit calculation using the trial functioi0), we find that
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the energy conservation law will be fulfilled if a friction term

is added to Eq(15), so that the two equations fay and «
will take the form

._é"H B oH 7. 3+q
e T g 29@r2q™

(19

[ 3+q
+ Wh(t)

Equations(19) are the basic evolution equations for the
collective-coordinate parameters, and they are exact as long

BREATHERLIKE EXCITATIONS IN DISCRETE . ..
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. 1273
J=— ;7 Jco2 wt 67 cogw)h(t),  (28)
5 .
W= y+ % (\JJ+ sinw) cosw— \E ( 1+ %) h(t).
(29

We see that when the nonlinearity paramegas large and
the intensity of noise ) is small, the quantities/(t) and
w(t)=w-— yt are slowly varying functions.

Let us introduce the probability densi®(7,w;t)=(&(J

as the description in terms of the self-similar trial function - J(t))&@—w(1))). Using standard techniques, we find

(10) is valid. In order to obtain an analytical estimate for the
decay rate of the breather, we will now consider the case

strongly localized excitations, i.e., large nonlinearity In
this caseB>1 and, using Eq(12), q<1. We can thus write,
instead of Eqs(19),

q=2J4/2q sine,

'—\FJ i \Fh 20
*=Vjq cosr—y— 5 7q+ \/5 h(b). (20

These equations are more easily analyzed if the variables

from Egs.(28) and(29) that the Fokker-Planck equation for

oP(Jwit) has the form

12997 4
aP= y Ij[jcosz(w)P]
673 o ,
— T% [(\/3+ sinw)cogw)P]
. 2
J d 3 sinw
+DI7\/€7COSN_%\[§(1+W> P,
(30

andq are transformed into action-angle variables. To do thiswherew:w+ yt. The right-hand side of Eq30) contains

we consider the Hamilton-Jacobi equation for the case wit

no damping and no noise, when Eg0) reduces to

. IH . 2 IH
q=23v2q SinaEa—aO, a= \[aJ cosy—y=——

aq’
(21
where
Ho=—232q cosa+ vq. (22)

Introducinga = dS/dq, we obtain the Hamilton-Jacobi equa-

tion
2J?
+yq=—7(1—j), (23

dS
—2J\2q cos( 7

where J is the action variablg,7=0). From Eq.(23) we
obtain that

K yx+(23%v)(1— )
S= f dx arcco{ N ) (24

and the angle variable is determined by

y? 4S
w= ﬁ w (25)
From Egs.(23)-(25) we then get
2J? ,
q=7(1+j+2\/35|nw), (26)
B 1+ ﬁsinw )
oM=L+ 7+ 27 sinw) 72 @7

so that using Egs(26) and (27) we obtain, instead of Eq.
(20),

r?apidly oscillating functions[cogw+yt) and siffw+yt)].

We can average this equation with respect to these oscilla-
tions (or, in other words, use the Bogolyubov-Mitropolsky
averaging procedure; see, e.g. Ref) 86d obtain

P_Gng d 3D d P
P= ﬁ(jp) E jw
3D L 1)\ ¢°P a1
2P\ 37wt 3D

Equation(31) describes the averaged dynamics of the system
under the influence of noise. However, since we are mainly
interested in the behavior of the quantity

(o5 =(AMD[?)=((1+2q) "3,

which is measured in our numerical simulations in Sec. I,
we do not need to solve E31). Indeed, it follows from Eq.
(26) that

(32

L 232 27?2
(1+20) =~1— —— — (D), (33
Y Y
where
o0 27
<j)=f djf do JP(J,w). (39
0 0

Multiplying Eqg. (31) by J and integrating with respect {@
and o, we obtain

67J°
” (DH+3D

d —
i {h=- (35

or
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z(t) =] 1 (V) |2 = [ 2(1) |’=N cosi(t), (42)

where the parametrization into the two independent variables
# and ¢ is possible due to conservation of the not6).
From Egs.(38) and (39), we then find the evolution equa-
tions for 6 and ¢,

Dy -
()= 5,32 (1= 0m I, (36)

where the initial condition(7(t))|;—,=0 (corresponding to
the stationary breather solution in the limit of largen the
absence of noigewvas used. Thus, from Eq&32) and (33),

we finally get b=2J cosp coth— y A cosi— 2 p\ sing sing—f (1),

22 D , -
<|¢O(t)|2>%1_ 7— % (1_9(_67]J /’y)t)

9=2J sine, (44)
L 2J2 GDJZt 67J? i1 where the noise terri(t) is obtained as
Y e ¥ <1
1 22 b e @D f(t)=hy(H)—hy(1). (45
- 7— % y t>1. Thus, the original equation®@8) and (39) containing multi-

plicative noise have been reduced to the two equatid8s
We see that the collective-coordinate approach gives a qualand (44) containing only additive noise. From Eq®) and
tatively good agreement with the results of the numerical45), we find the autocorrelation function
simulations from Sec. Il as concerns the dependence of the
decay rate of the breather on the nonlinearity and noise in- (FOF(t"))=4Ds(t—t"). (46)
tensity: The coefficient BJ%+? for the linear term in the
small-time regime exhibits the same proportionalityDtby? Fokker-Planck equation for the probability densye, ¢:1)

that was observed numericallgompare Figs. @& and 3b)], a - -
and the numerical prefactor is of the same order of magni-_w(a AD) b= H(1)))- It reads

Using standard techniques, we can then derive the

tude. However, the; dependence predicted by H§7) does 9P=—2J singd,P— 3,4[ (2] cosp cotd— y\ cosd
not agree very well with the numerical results. Indeed, Eq.
(37) predicts a stationary nonzero value of the initial-site —2J9N sind sin¢)P]+2D(9§,P. (47)

intensity ast—o when =D/y, while we have seen in Sec. : i . . — .
Il that |$0|2 always decays to zero also in this case. TheBy replacing the left-hand side with 0, we find its stationary

reason for this discrepancy is that in our Collective-somnonPs(e’d)) (assuming) #0),

coordinate approach we have assumed that the total norm of J

the breather will be constant in time. However, as is clear Ps(6,¢)=C sinfd exp{ T (/\/’sine cosp

from the numerical simulations, in reality radiation will be B

created through the action of the noise and the norm of the YN?

breather(i.e., of the coherent part of the excitatjomill de- t T 00520) ] (48)

crease with time. Thus relatioill) between the parameters
A and B, which we have assumed to be valid for all times,where C is a normalization constant and the relation

will in reality only be valid for smallt. D/n=kgT from Eq. (5) has been used. Here we should re-
mark that this solution was also found in Ref. 18 as a solu-
IV. EXACT RESULTS FOR THE DIMER tion to the approximate Fokker-Planck equation derived for

the coupled dimer equatiori8) and(4) in the limit of large
In this section, we will show that if the system describeddamping\. By integrating overg and returning to the vari-
by the DNLS equation(1) is restricted to only contain two ablez=A\ cos#é, we finally obtain the stationary distribution
sites, it is possible to obtain an exact expression for the stefunction for the difference in the occupation probability be-
tionary distribution of the difference in occupation probabil- tween the sites as

ity between the sites. We thus rewrite Ef). (assuming rigid
boundary conditionsas Pio—C yz? I JVNZ—Z2 VS
(2)=Cexp gy ) lo| 7| SISN
(49)

whereC is a new normalization constant ahglis a modified
g Bessel function of the first kin®.

= 2 ho (D=0, (39 From Eq.(49), we observe that the shape of the stationary
[ dt) v 2Dz 39 probability distribution P(z) changes qualitatively when
varying the rescaled parameteysand T defined as

. . . ~ YN =~ kgT
X(D) = (D¢ (O + l/fz(t)l/fl(UENSlnﬁ(t)COSd’(t),( ) =33 TTIN (50
40

g+ o+ 4y

d
Y= a)|¢1|2+h1(t)¢1:0, (39

o+ Jihy+

To proceed, we change variables as follows:

Three different regions in th@-? plane can be identified
y(t)=i[ ¢ (t) 5 (1) — () & (1) ]=N sind(t)sing(t), (see Fig. 4 In region |, wherey<I,(1/T)/14(1/T), the
(41)  probability distribution?(z) is unimodal, having one single
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“jump” between the sites can be obtained by considering
the quantityP(0)/P(z,a0. Wherez,,, is the location of the
probability maximum. For large, this quantity is seen from

Eq. (49) to behave approximately & 2. Thus, wherT is
small compared tg (i.e., whenD/7<yN%4), the probabil-

ity to find the quasiparticle equally distributed between the
sites will be very small and, consequently, also the probabil-
ity to make “jumps” between the sites. An excitation ini-
tially localized on one of the sites will stay there practically
forever, the self-trapping will be preserved, and the two-
peaked equilibrium probability distribution will in practice
never be reached. On the other hand, whery/2, the prob-
ability distribution is relatively flat, which means that the
noise will be strong enough to cause transitions between the
sites, and the self-trapping is destroyed. This behavior has
been confirmed with numerical simulations, and it also

. L agrees with similar conclusions obtained for the model stud-
FIG. 4. Phase diagram for the probability distributiB(z) from ied in Ref. 18

Eq. (49). In region I,P(z) has a single maximum at=0; in region
Il, P(z) has two maxima for €|z|<N; and in region IlI,P(z)
attains its maximum value at=*N. V. CONCLUSIONS

. . . We have found that introducing multiplicative white noise
maximum a_1tz=0 corresponding_to Equal ,populanon be- and nonlinear damping into the discrete nonlinear Schro
tween the S,'t,es' Wh‘?'rl(?”)“ o(1M) < r< vzr (reg|op 1D, dinger equation will cause decay of the self-trapped discrete
the probability distribution becomes bimodal, having o eathers which are created for large nonlinearities. A nu-
equivalent maxima corresponding to an excess of populatiogerica| analysis showed that the intensity at the central
on e_|ther of the sites by minimumzatO0. The wo . _breather site would initially decrease approximately linearly
maxima are obtained as solutions to the equationi time. The decay rate was found to decrease with in-
13(b)/blg(b) =T, whereb=(1/T)y1—(Z/N)*. Asy (or  ¢reasing nonlinearity and with increasing damping, and
T) increases in this region, the two maxima move outwardsncrease with increasing noise variarizdeUsing a collective
towardsz==*\/, and fory>1/2T (region llI), the probability ~ coordinate approach with an exponentially localized trial
distribution attains its maximum value at the end points function, the linear decay was predicted and a decay rate
=+ N. proportional toD/+7 for smallD and largey was obtained in

It is instructive to compare the nature of the noise-inducedjood agreement with the numerical results. However, not
phase transition described above with the self-trapping trantaking into account the gradual decrease of the norm for the
sition that occurs in the noise-free dimer system. In the lattebreather, the collective-coordinate method could not predict
case there is a static transitiongt1, since, if and only if its final destruction. Indeed, fory large enough the
y>1, there exist stationary states where the two sites areollective-coordinate method predicted a stationary nonzero
unequally populated The difference in occupation probabil- mean value of the initial-site intensity in the long-time limit,
ity is given byz=+A1—1/y 2. There is also a dynamic while the numerical calculations showed that for all param-
self-trapping transition occurring ai=2 in the undamped eter values the breather would finally be destroyed and the
system(#%=0); i.e., if one single site is initially excited, the long-time behavior would be diffusive.
main part of the intensity will remain at this site if and only  In the particular case of the dimer, we showed that, by
if ¥>228 Wheny<2, the variablez will perform oscilla-  performing a suitable change of variables, the original equa-
tions described by Jacobi elliptic functions betwee and  tions containing multiplicative noise could be transformed
N. In the presence of damping, the system will always settlénto equations containing only additive noise. The Fokker-
down in one of the self-trapped stationary states wherl,  Planck equation for this system could then be derived, and its
except when the two sites are initially identically excited. stationary solution was found exactly. By analyzing this so-
However, the final self-trapped state will not necessarilylution, we found that by increasing the temperattlireD/7,
have its main intensity at the initially excited site when a transition from a unimodal phase, corresponding to maxi-
1<y<2, since the variable may exhibit an initial oscilla- mum probability for an equal population between the sites,
tory behavior if the damping is small. to a bimodal phase, corresponding to maximum probability

Thus we see that since the location of the transition fronfor an excess of population on either of the two sites, could
a unimodal(region )) to bimodal(region Il) probability dis- be achieved. We also found that the self-trapping for the
tribution P(z) approaches the valug=1 asT—0, it coin-  dimer case would in practice be preserved as long €y,
cides with the transition into a self-trapped state in the noisesince the probability for transitions between the sites in this
free dimer. However, it is important to remember that whencase would be exponentially small.

T>0, the state will not necessarily be trapped around one of It is interesting to compare the results obtained for the
the probability maxima even if the distribution is bimodal, infinite DNLS chain with the results obtained for the dimer.
since the noise may induce frequent transitions between tha the case of the infinite chain, we found that the self-
sites. An estimate of the tendency for the quasiparticle tdrapped breather cannot exist as a stationary state for any
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