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148 W. V.

Considering a single spur, let #, be the number of
radicals which escape recombination as a result of
hydrogen produced in that spur. Then an increment of
dose, dR, to the system will cause radicals within the
spur to disappear as a result of hydrogen produced in
other spurs; so

—dR/d logn= Ryn./n, (14)

where Rq is the initial value of dR/d logn. Assuming
that a particular spur is affected only by the hydrogen
produced after its formation the integration of (14)
between the pertinent limits gives

o= neRO/(RO-I'RT_ R) )

Rr—R being the dose received after the formation of
the spur. We now want 7, an average value for all the
spurs produced throughout the whole radiation inter-

(15)
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val. Since dR/ Ry is the fraction of the total number of
spurs produced in the increment dR our desired aver-
age is

no/ne=(R/Re) [ [dR/(RoRo—R)]
0

= (Ro/Rr) log[ 14 (Rr/Ro) ].

An estimate of 7i/#, which is independent of Eq.
(16) is not possible at this time, though it seems that
it should certainly be greater than the ratio of Ny to
the number of free radicals formed when radiation is
done in the presence of iodine. This ratio (for 16 J/g
radiation) is 5.65X10v7/2.0X10¥=0.28. The most
plausible results from Eq. (16) are obtained by assum-
ing 7io/%,=0.70 for the 16 J/g treatment. This requires
values of 0.39 and 0.145 for the 64 and 256 J/g
treatments.

(16)
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Expressions giving the sum of the energy values, raised to the second and third power, for a nucleus inter-
acting with a static magnetic field and a static electric field gradient are derived. Several applications of
this method for obtaining the values of the components of the electric field gradient tensor from observed

NMR spectra are suggested.

1. INTRODUCTION

HE method usually applied in extracting the values

of the components of the electric field gradient
tensor V;; at the site of a nucleus in a single crystal
from experimental magnetic resonance data proceeds
as follows: The values of the transition frequencies »,
determined as functions of the angles specifying the
direction of the magnetic field with respect to some set
of reference axes fixed in the crystal, are compared with
certain theoretical expressions for the »’s containing
Vi as parameters. These expressions are approximate
only, being derived by perturbation calculations. The
state of the art has recently been reviewed by Cohen
and Reif.!

There is, however, another method, known as the
method of energy moments, which has the advantage
of being exact. This method has been discussed by
Brown and Parker?® in connection with the problem
considered here. Their final results are only stated in

1M. H. Cohen and F. Reif, Solid State Phys. 5, 321-438,
(1957).

21L. C. Brown and P. M. Parker, Phys. Rev. 100, 1764 (1955).

3P. M. Parker and L. C. Brown, Am. J. Phys. 27, 509 (1959).

the system of principal axes of V;, and this system is
very often unknown in advance. It is the purpose of
this note to give a short derivation of formulas per-
taining to the general situation,

2. THEORY

The Hamiltonian for the system is (in frequency
units)?!

J=—wlpmp+4aVi; Ty, 1)
where
a=23eQ/21(2I—1)h, (2)
and
Ty=3Id A1) —84l.1, (3)

(summation over dummy indices implied).

Here v, is the unperturbed nuclear Larmor frequency
in the applied magnetic field Hy. The direction of H, is
specified by the components #, of a unit vector in an
arbitrary sysiem of rectangular axes of reference fixed
in the crystal. I, and V; are the components of the
spin vector operator and of the electric field gradient
tensor, respectively, in this coordinate system. Finally,
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Q is the quadrupole moment of the nucleus, and I is
its spin quantum number.

It is well known, that in these experiments only the
traceless part of V;; may be determined. It is, therefore,
as a matter of convenience customary to assume for
Viin (1) that

V,'.'=0. (4)
We also note that
Vi=Vjs. (8)

We shall now calculate the diagonal sum of the
Hamiltonian operator raised to some integral power.
We shall write

S,=Tr{3cr}. (6)

The general form of S, may be constructed by using
the following two principles:

(a) Only terms with », raised to an even power will
appear (corresponding to the fact that experimentally
one can not discriminate between a given direction of
the magnetic field and the opposite direction).

(b) As 3c» is a scalar operator, S, will be a “c-num-
ber” scalar, i.e., only scalar invariants formed by com-
bination of the tensor V,; and the vector #; can appear
in the expression for S..

Let us find the general form of S;: According to (a),
(1), and (6), only terms of the form e and of can
appear. The coefficient to v« must, due to (b), (1),
and (6), be a linear combination of those scalars, which
can be constructed by using the vector #, twice and the
tensor V;; once. There is only one such scalar in the
present situation, namely,

n,-V,-;n]-.

[The other possibility #;V;; gives zero on account of
(4).] Analogously the coefficient to the term o con-
tains the scalars which can be constructed by using
the tensor V;; three times, the only possibility being

ViiVisVai

[The determinant of a symmetric, traceless second-

order tensor is proportional to the expression just given

and a scalar like V;;V ;V,, is zero on account of (4).]
Thus .S; must be of the form

Ss=6g2(I)wiomiVimi+4g(1)oViiVisVi, (7)

where g» and g; are functions, yet to be determined, of
the spin quantum number I. The choice of specific
values for the numerical factors in (7) is made for con-
venience,

In the same way (and utilizing ns;=1), it is easily
shown that S; must be of the form

Se=gi(D) v’ +38(I) ViV ;. (8

For S, we have
51‘—'-0. (9)
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To determine the functions gi++-gs we make a
specific choice for V;; and ;. Putting m=n,=0,
ns=1 and Vyy=Vau=—1, V=2 together with V=0
for 175 (thus V;;V;=6, ViV V=6, and n:Vin;=2)
gives, according to (1):

H=— Vo[3+%a[3132— (112+122+132) ]

In a representation where the operators I3 and I,%4-
I?+1? are both diagonal, S, and S; are then easily
calculated, and by comparison with (7) and (8), we
obtain

a() =3I(I+1) (2I+1),
g(I) =gu(I) =g (2I-1) 21(I) (2I+3),
gs(I) =45 (21—3) g:(I) (2I+3);

(7) and (8), when written in the system of principal
axes of V; are of course identical to the results of
Parker and Brown.?

Higher moments may be calculated along the same
lines as indicated above with a few more complications,
but as discussed below a knowledge of Se and !Sa will
normally be enough for the determination of V.

3. APPLICATIONS

(10)

We shall consider the usual experimental setup,
where the crystal can be rotated about, say, the
X axis, which is perpendicular to the direction of the
magnetic field Hy. The angle between Hy and the ¥V
axis is denoted by 6. (measured positive counter-
clockwise looking down the X axis), so that the unit
vector 71 is given by (0, cosf,, —sinf,). Equations (7)
and (8) then take the form

Se=g1(D)vi*+go(I)v*(1+37%),
S3= SgZ(I) V02VQ|:¢w+¢zz+ (¢‘w—' ¢22)
X c0820,— 2¢, sin20, |+g5(1) v (1—9%). (7a)

(8a)

Here
ve=[3/21(2I—1) }(e*Qq/h),
and
bii=(1/eq) Vy;,

where eq and 5 have their usual meaning.!
The dimensionless tensor ¢;; satisfies the following
conditions:

$::i=0, (11)
bisbii=3(1+%7), (12)
bipisbei=3(1—7), (13a)

or equivalently
|6 | =2(1—7). (13b)

In the following discussion, because of g3(3)=0
we limit ourselves to the case I>£%. Further it is
assumed that the last terms in (7a) and (8a) are
not negligible with respect to the first terms in these
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equations. This assumption means that (in the lan-
guage of the usual methods) second-order shifts are
observable. It should, however, be stressed that the
present method requires that the full spectrum must be
observable, in order to be able to construct the energy
level scheme and from this calculate Se and Ss.

(a) If one principal axis of ¢;; is known in advance
we choose this as the X axis (giving ¢ =¢.,=0) and
obtain from the rotation pattern about this axes [vide
(8a) and (7a)] the values of:

vQ (¢‘w_¢zz) )
voPyz,
3g(I)wetvo(@uy+0:2) Hgs(I)va? || b4 |,

and
vQ'isdji.

This gives four equations for the three unknown
quantities vgpyy, vd.., and vod,. (we have ¢uo=—dyy—
¢..). It is readily seen that this determines these quan-
tities uniquely (and that a certain overdetermination
exists, giving a check on the experimental data). Thus
knowing in full the tensor ve¢y;, the location of the
principal axes in the ¥-Z plane as well as g and ¢ are
then found by standard methods.

(b) If nothing is known in advance about ¢, we
shall indicate two methods to obtain first »g and 7.

(1) If three spectra, with the magnetic field in the
X, Y and Z direction, respectively, are measured we

V. FRANK

see from (7a) and (11) that
S5(8,=0) + S3(6,=0) +S3(8.=0) =3gs(I)ve*(1—7°).

From this and the value of vg?(143%%) [from (8a)], vq
and 7 may be obtained separately. Note that this result
is correct for an arbitrary choice of three mutually
perpendicular axes.

(2) If S;is observed for two different values of the
magnetic field (the crystal being arbitrary but fixed in
orientation) we get from (7a) (in an obvious notation)

(" /n)2S5'— S5 =[ (w"/w')*— 1 1gs (D) w* (1—17%)

giving the value of vg*(1—7?), which combined with the
value of »g?(1+19?) from (8a) gives vg and .

Knowing »g and 7, a rotation diagram about the X
axis will now, according to (7a) and (11) give ¢y,
D22y Guz=—yy— .. and ¢y,. Substituting these values
in (12) and (13b) gives two equations connecting the
still unknown components ¢, and ¢... In a ¢zy—¢s.
plane these equations describe a circle and an ellipse,
both centered in (0, 0). Of the four possible pair of
values for (¢, ¢z;) @ unique pair may be selected by
the results of a single measurement with the magnetic
field in the X-Y¥ or X-Z plane. In practice a complete
rotation pattern about the ¥ axis (say) may be pre-
ferred, giving quite an overdetermination of the
problem.

Our thanks are due to A. Pedersen and to A. Nielsen
for commenting on the manuscript.
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The proton magnetic resonance spectrum of the distinct species HDO has been observed in dilute solu-
tions of H;0 and D0 in carefully purified organic solvents. The HDO triplet is centered 0.030:-0.003 ppm
upfield from the H:O resonance. The proton—deuteron spin-spin coupling constant Amp is 1.1+0.1 cps.
Approximate theories which provide explanations for the coupling constant and chemical shift are discussed.

RESULTS

HE proton magnetic resonance spectrum of HDO
has not been observed previously, primarily be-
cause the rapid exchange of protons and deuterons in

1 Supported in part by the Research Corporation.

* Presented at the Southern California Regional meeting of the
American Chemical Society, Los Angeles, December 1960.

I Present address: Research Laboratory, General Chemical
Division, Allied Chemical Corporation, Morristown, New Jersey.

§ Alfred P. Sloan Fellow.

¥ Present address: Fabrics and Finishes Division, Experi-
mental Station, E. I. du Pont de Nemours and Company, Wil-
mington, Delaware.

H,0-D;0 mixtures effectively averages the small
differences in magnetic environment for protons in
H,0 and HDO. However, the exchange rate can be
slowed down considerably if the H;O-D;0 mixture is
diluted with a solvent of low basicity which has been
carefully purified. At sufficiently high dilution, then,
one might expect to observe the spectrum of the mixed
isotopic species HDO. Figure 1(b) is the proton reso-
nance spectrum in the water region of an acetone solu-
tion containing equimolar amounts of H;O and D,O ata
total concentration of 1.1 mole/liter. This unsymmetri-
cal multiplet is a superposition of the spectra of the
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