

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jan 19, 2019

Model-Independent Diffs

Könemann, Patrick

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Könemann, P. (2008). Model-Independent Diffs. Lyngby: Technical University of Denmark, DTU Informatics,
Building 321. D T U Compute. Technical Report, No. 2008-20

http://orbit.dtu.dk/en/publications/modelindependent-diffs(06749932-9919-4f49-99cf-01f2e4660224).html

Model-Independent Diffs

Patrick Könemann
Technical University of Denmark

Technical University of Denmark

IMM-TECHNICAL REPORT-2008-20

December 19, 2008

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-TECHNICAL REPORT: ISSN 1601-2321

Model-Independent Diffs

Patrick Könemann

Technical University of Denmark, Informatics and Mathematical Modelling
pk@imm.dtu.dk

Abstract

Computing differences (diffs) and merging different versions is well-
known for text files, but for models it is a very young field. Text-based
and model-based diffs have different goals and different starting points,
because the semantics of their structure is fundamentally different. Text
files just contain a list of strings, one for each line, whereas the structure
of models is defined by their meta models. There are tools available which
are able to compute the diff between two models, e.g. RSA or EMF Com-
pare. However, their diff is not model-independent, i.e. it refers to the
models it was created from. We present concepts for model-independent
diffs, how it can be created and used. In the end, we present an idea of how
the diff could be generalized, e.g. many atomic differences are merged to
a new, generalized diff – similar to a patch for text files. The advantage of
such a generalized diff is that it is applicable to a higher variety of models.

Keywords. model differencing, emf compare.

1 Introduction

Text-based diff & merge1 is used to compute differences between two different
versions and merge them, e.g. if many developers are working on the same files.
It is well-known in software development, but only applicable to text files. In
the time of model-driven software engineering, models are used for software
development and, in particular, for generating code. This makes diff & merge
for models desirable as well.

A textual diff can be stored as a patch, which is a self-containing file describing all
differences between two versions of one or more text files. Its intention is to store
the diff and make it applicable to other files, maybe on another workspace on
which the original text files are not available. Moreover, a patch describes both
states, before and after the change. This makes it possible during application of
a patch to identify whether it was already applied or not; in addition, a patch
can also be used in reverse direction, i.e. the changes can be undone.

Some approaches like RSA [IBM08] and EMF Compare [Tou07] provide support
for diff & merge of models. RSA performs it in-momory, whereas EMF Compare
is also able to store the diff in a file for later re-use. However, it always refers to
the models it was created from, hence it depends on the models and cannot be

1We use the short form diff & merge for the term differencing and merging.

1

pk@imm.dtu.dk

2 TEXT- VS. MODEL-BASED DIFFS

used as a patch for text files. This report introduces a way to describe model-
based diffs independently from the models they were created from, hence such a
model-independent diff can be used as a patch for models.

The paper is structured as follows. Sect. 2 compare text- and model-based
diffs and motivates our work. In Sect. 3, we present our concepts for model-
independent diffs, whereas in Sect. 4, we propose an idea for generalized chan-
ges. We end the paper with the presentation of related work in Sect. 5 and a
summary in Sect. 6.

2 Text- vs. model-based diffs

The main differences between text- and model-based diffs are shown in Ta-
ble 1: it opposes the structure, referencing, comparison strategy, and accuracy
of compare results. These properties of model-based diffs lead to the following
challenges which need to be solved for creating model-independent diffs. Fur-
thermore, we already propose our approach for solving them, which is described
in more detail in Sect. 3.

Text-based diffing Model-based diffing
A text file is represented as a list of
lines, each containing a string.

A model is mostly represented as a
graph, i.e. model elements may refe-
rence each other.

The only way of pointing to some
place in the text file is by addressing
the line number.

A model element can be referenced
differently, e.g. by structure or by a
unique identifier (ID).2

Comparisons are usually performed
line-by-line, so this structure is used
for comparing text files. There are
different ways of representing chan-
ged lines, some examples are given
in [MES03].

Models do not have a common struc-
ture (e.g. as lines in text files), but
they may be structured as a tree
or may have unique IDs. So the
compare-strategy depends on the ty-
pe of model.

Text file comparisons are not exact,
because the contents of a text file
cannot be addressed exactly.3 Sub-
strings are compared and heuristics
are used to find the correct loca-
tions for applying a patch. Again,
[MES03] gives some details concer-
ning accuracy.

If model elements have unique IDs,
then the diff is exact. However, if
the model does not have unique IDs,
then the diff is also not exact and
usually based on heuristics. Mostly,
a combination of the structure and
attribute values is used to match ele-
ments.

Tabelle 1: Comparison of textual and model-based diffing

2If an element has a unique ID, it can be addressed uniquely during its entire life-cycle;
the ID also remains the same across different versions of the model.

3Let us assume, a patch points to line 5 of a file; but before applying the patch, 2 new
lines were added before line 5, so the patch must be applied to line 7 now. This is why some
substring before and after each actual difference is stored as well, which can be used to find
the relevant locations in the file.

2

2 TEXT- VS. MODEL-BASED DIFFS

How is a model structured?
A text-file always contains lines, each containing a string. However, models may
consist of arbitrary elements, having attributes, references, and maybe other
properties – so the structure of models may vary.
Our approach: In order to support comparisons for a particular kind of models,
we have to agree on a common meta model which describes the structure of our
models. A good choice could be the Meta Object Facility (MOF, [OMG06a]),
since it is the basis for many modeling languages used in software engineering,
such as UML [OMG07] and EMF [emf08].

How to reference changed elements?
In text files, each place can be addressed using a line number – but this is not the
case for models. If we are lucky, each element can be addressed via a unique ID,
but that depends whether the meta model enforces unique IDs for each element.
If not, the structure of the model or the values of the elements can be used to
match common elements. But it can even be worse: what if a model does not
contain a sophisticated structure and maybe too few attributes to compare?
Our approach: If IDs are available, they would be the easiest way to address
elements. If that is not the case, we need heuristics to match common elements,
similiar as the text-based approach does it. The combination of the elements’
structure and their attribute values is a very common strategy that is often used.
But maybe this is not the best strategy either – we cannot decide a proper strategy
for each model! Instead, we propose an interface for addressing model elements;
implementations may use e.g. IDs, heuristics, or another individual strategy.

How to store the addition of a new model element?
A patch for text-files just contains the added lines (i.e. the strings) and some line
numbers. This works, because the lines are independent or the rest of the file. But
that is not so easy for models for two reasons. First, model elements may have
a more complex structure than just strings. They may have different attributes,
maybe even sub-elements – hence we need to store sub-models. Second, the
newly added element may contain references to other model elements, which is
again the previous challenge. This problem does not occur in text files, because
they do not have cross-references.
Our approach: We need some kind of descriptor, that sufficiently describes a sub-
model, including multiple elements and references to other elements that may
not be contained in this particular sub-model. It should work to use the same
kind of references described previously.

All these problems are already discussed and solved specifically for models of
the tool Enterprise Architect [KKU08]. However, it is hardcoded for the meta
model used, and especially for the unique IDs, of the Enterprise Architect. To
transfer these concepts to other models, they need to be re-coded for the respec-
tive meta model. Our goal is to abstract from such particular meta models and
to generalize this approach for arbitrary models. To do so, we formulate these
concepts on a higher level, namely for a subset of MOF (Meta Object Facili-
ty [OMG06a]). As an implementation, we have chosen EMF (Eclipse Modeling
Framework [emf08]); one reason was the sub-project EMF Compare, which al-
ready contains a sophisticated diffing framework and supports most of the just
presented diffing capabilities. Furthermore, a UML meta model based on EMF
exists, so the concepts developed here are applicable to these models as well.

3

2 TEXT- VS. MODEL-BASED DIFFS

Having these technologies available, we can use the existing compare engine
of EMF Compare to first create a model-dependend. Then we focus on the
model-independent representation of diffs, so we do not need to consider the
diff creation process. Figure 1 gives an overview of the creation and application
of model-independent diffs:

Tool
(apply diff)

Model A’

Model A

• matchmodel
• diffmodel

diff
Tool

1. transformation

•extended matchmodel
•extended diffmodel

independent diff • no model references
• contains all changes

(and their values)

2. transformation

* produced by 2nd transformation

(create diff)

Model B’ *

Model B

• matchmodel
• diffmodel

diff *

references

references

references

references

Abbildung 1: Transformations between model-dependent and model-
independent diffs

1. Create a model-dependent diff from two versions of model A with an
existing tool. The diff does not contain the actual differences, it just refers
to the changed elements of the source and the target model and gives some
information about the difference itself.

2. In the 1st transformation, the model-dependent diff is transformed into a
model-independent diff with respect to the three main challenges described
above.

3. In order to apply the diff to another model B, the references need to be
restored and conflicts need to be identified. To do so, the 2nd transforma-
tion creates a new diff and a temporary model B’. Then, the very same
tool from step 1 can be used to visualize and resolve the conflicts.4

The concepts covered in this paper focus on the properties of the first transfor-
mation and some on some thoughts how to realize the second transformation.

4The second transformation, however, is not described in this report but is future work.

4

3 DIFFING MODELS

3 Diffing models

A model-independent diff has special requirements as already mentioned pre-
viously.

• It must describe all differences independently from the originating models,
i.e. it must contain the actual values which changed (EMF Compare, in
contrast, just refers to the models and describes where something was
changed – so the actual differences are implicit and have to be computed
form the models on the fly).

• It must contain information to find the changed element in arbitrary mo-
dels; for instance by using IDs or structural similarities.

• We need to consider at least 9 types of changes: elements, attributes, and
references, each may be changed, added, or removed. A three-way-compare
(see [Men02] for details) is not considered – this is why the EMF Compare
meta model5 has 15 change types.

• Conflicts are not considered, because we only want to store non-conflicting
diffs. Later, if changes are applied to a particular model, there might be
conflicts – but this is not of interest at the moment.

Example

We present a small example before explaining our meta model for model-inde-
pendent diffs. Figure 2 shows a simple library meta model, in which books have
a title and a catalogue number (which identifies a book uniquely). A model (in
the middle of the figure) just contains one book titled Galaxy. Next, we create
a copy of the model, change the name to Guide (right-hand side of the figure),
and show how a model-independent diff could look like.

The diff is shown as a small object diagram, containing an object of type Inde-
pAttributeChange, which represents the actual difference, and an object of type
IdEmfReference, which is a symbolic reference to the changed element. In order
to be model-independent, the diff must not contain a direct reference to the
models (similar, a patch for text files is also independent from the text files it
was created from). So we just need to store some information to address which
element was changed, namely the unique identifier catalogueNr of the book.

The other parts of the diff are simple: The old as well as the new value of
the changed attribute are stored in oldValue and newValue. The information of
which attribute of the referenced element was changed, is given in a reference to
the library model, which points to the according attribute in the library model.
So the model-independent diff in this simple example only consists of a changed
attribute. The following proposes a meta model for such diffs.

5In tutorial Using the Compare Services of EMF Compare documentation; direct link:
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.emf/org.eclipse.emf.compare/
doc/org.eclipse.emf.compare.doc/tutorials/images/DiffMM.jpg?revision=1.1&root=
Modeling_Project

5

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.emf/org.eclipse.emf.compare/doc/org.eclipse.emf.compare.doc/tutorials/images/DiffMM.jpg?revision=1.1&root=Modeling_Project
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.emf/org.eclipse.emf.compare/doc/org.eclipse.emf.compare.doc/tutorials/images/DiffMM.jpg?revision=1.1&root=Modeling_Project
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.emf/org.eclipse.emf.compare/doc/org.eclipse.emf.compare.doc/tutorials/images/DiffMM.jpg?revision=1.1&root=Modeling_Project

3 DIFFING MODELS

Abbildung 2: Parts of a model-independent diff of a changed attribute

Meta model for model-independent diffs

We present our meta model for model-independent diffs in three class-diagrams.
The first one is shown in Fig. 3 which contains the root element for diffs, Inde-
pendentChangeModel, as well as several classes for the actual changes, and two
interfaces (IModelDescriptor and IElementReference). All classes colored cyan
(subclasses of IndepChange) describe the actual changes (i.e. elements, attribu-
tes, or references can be added, removed, or changed), similar to the diff meta
model of EMF Compare.6 Imported classes from other packages are colored gray
with the package stated in paranthesis, e.g. EAttribute (from ecore). The tricky
parts in this meta model are the (roughly corresponding to the challenges in
Sect. 2):

1. References from a diff to the meta model of the changed model (in the
example in Fig. 2, it is the reference from the diff to the library meta
model) are realized with references to EAttribute and EReference, which
are part of the EMF ECore meta model.

2. Symbolic references from the diff to elements in the changed model are
represented by the interface IElementReference. It is explained in more
detail in Sect. 3.1.

3. A descriptor for added or removed model elements (and for whole sub-
models) are represented by implementations of the interface IModelDes-
criptor. An important aspect is to also remember all references to other
elements. This concept is explained in Sect. 3.2.

6Concerning an emfdiff of EMF Compare, there will be a 1:1 correspondence between a
DiffElement and an IndepChange of a model-independent diff.

6

3 DIFFING MODELS

Abbildung 3: Meta model for model-independent diffs

7

3.1 Symbolic references 3 DIFFING MODELS

3.1 Symbolic references

A model-independent diff needs to point to changed elements without directly
referring to them. So we would like to use symbolic references (in literature also
called indirect references) in order to separate the diffs from the models. But
what is a symbolic reference? We found a nice explanation in the book “Inside
the Java Virtual Machine”:

“A symbolic reference is a character string that gives the name and possibly other
information about the referenced item – enough information to uniquely identify
[it].” 7

Unlike direct references, symbolic references do not require the referenced items
to be available; however, a symbolic reference can be resolved to a direct re-
ference which can be seen as a direct pointer to the de-referenced item. The
example in Fig. 2 already motivated the need of such references. Instead of
using a character string, we use the following meta model for describing sym-
bolic references in model-independent diffs.

Meta model for symbolic references

Symbolic references are used in the meta model for independent diffs (Fig. 3) in
many places (interface IElementReference). As explained before in Sect. 2, there
might be different ways of pointing to model elements. Let us first distinguish
between model elements that have a unique identifier, and those which do not. In
the first case, symbolic referencing can easily be done using the unique identifier,
which – by definition – identifies the element uniquely during its entire life-cycle;
the ID also remains the same across different versions of the model. In the other
case, we need some other information about the referenced item, for example its
attribute values, some structural information, or its neighbour elements. The
diagram in Fig. 4 shows three possible implementations for symbolic references
in EMF models.

The class IdEmfReference can be used to refer to elements which have an attri-
bute marked as a unique identifier. For all other classes, we need to store some
other information.The ElementSetReference has a set of conditions, e.g. in OCL
(Object Constraint Language [OMG06b]), which can be used to identify one or
a set of elements. We will see an example for that later in Sect. 4.1 on page 15.
The StructureEmfReference, on the other hand, contains a sub-model, which is
supposed to contain sufficiant information to identify that particular item in a
model. Then, the reference elementDescriptor points to the referenced item in
the sub-model. Next, we present an example for a StructureEmfReference.

Example for symbolic references

The object diagram in Fig. 5 shows two symbolic references from the previously
used example. The reference to the book is ID-based, whereas the reference to
HitchikerTricks is a StructureEmfReference and thus not ID-based.

7Available at http://www.artima.com/insidejvm/ed2/securityP.html

8

http://www.artima.com/insidejvm/ed2/securityP.html

3.1 Symbolic references 3 DIFFING MODELS

Abbildung 4: Meta model for symbolic references

Abbildung 5: Example for symbolic references

The right-hand side shows our example again, whereas the left-hand side shows
the two symbolic references mentioned. IdEmfReference uses the catalogueNr
attribute of the book as a unique ID. The CD does not have a unique ID defined
in its meta model, hence the StructuredEmfReference is used as a symbolic
reference. It contains a model descriptor containing the attributes of the element
itself as well as its parent. Furthermore, elementDescriptor points to the wanted
element in the sub-model. This gives a lot of information which can be used to
resolve the symbolic reference, which is covered next.

9

3.1 Symbolic references 3 DIFFING MODELS

Resolving symbolic references of type IdEmfReference

Considering the scenario that the model-independent diff from the previous
example should be applied to another model, then both symbolic references
the need to be resolved. The IdEmfReference is easy, because we just need to
’ask’ the model for the element with the specified unique ID. Fig. 6 shows the
symbolic reference on the left, a temporary model in the center, and another
model, for which the symbolic reference should be resolved, on the right. The
symbolic reference to the CD is not ID-based, so we cannot simply ’ask’ the
other model for a reference to the element. Instead, we suggest an idea of how
de-referencing could be realized:

Abbildung 6: Resolving symbolic references

1. Use the model descriptor of the symbolic reference to build a temporary
model (in the middle of Fig. 6).

2. Use a matching engine in EMF Compare to compare the temporary model
with the other model. Let us assume that the marked elements on the
right-hand side are matched by the match engine.

3. The element in the other model that matches the requested element in the
temporary model is then the resolved symbolic reference.

An important issue is, how much information is needed in order to provide a
sub-model that is sufficiant to uniquely identify the element. Here, we only use
the element itself and the parent, but maybe it would be a good idea to as well
add all elements directly connected to the referenced element.

Notes

We have shown ideas how to implement symbolic references for elements with
and without unique IDs. Sect. 4.1 explains the idea of de-referencing sets of
elements in more detail. However, we focus on ID- and condition-based symbolic
references at the moment, to keep things simple. But the interface is built in a
way such that other strategies for symbolic referencing are possible as well.

10

3.2 Descriptor for sub-models 3 DIFFING MODELS

3.2 Descriptor for sub-models

One of the challenges is the description of a sub-model in a model-independent
diff. The example in Fig. 7 shows a simple object diagram, a library containing
two books titled Galaxy and Universe. There are several elements stereotyped
with «add», which means that they have been added to the model: a book titled
Hitchhiker with a CD HitchhikersTricks, and two references between the new
and the existing books.

Abbildung 7: Two elements are added as a sub-model

There are actually two logical changes made to the model: first, a new book with
a CD was added; second, a reference from the book Galaxy to the new book was
added. Next we will see how these changes are expressed in a model-independent
diff.

Additions in model-independent diffs

Regarding two versions of a model, a newly created element exists in the later
version but not in the ealier one. In order to define an addition, we need to
know what exists means. Concerning model-driven development in general, there
might be many models involved, also referencing each other. With this regard,
we say that elements exist in a model, if they are contained in that particular
model. Do we consider containments as the main structure for all models, as it is
the common case for EMF models. This has two important consequences: First,
all diffs concerning elements are based on containments, hence the addition,
deletion, and movement of model elements. Second, although containments are
a special type of references, they are not covered as reference changes.

With regard to the challenge as described in Sect. 2, there are several aspects
we have to consider:

1. We have to store an entire hierarchy of model elements,

2. including their attribute values,

3. and also their references to other model elements.

According to our meta model, all green elements in the example above (classes
Hitchhiker and HitchhikerTricks) would be part of an IndepAddElementChange

11

3.2 Descriptor for sub-models 3 DIFFING MODELS

(cf. Fig. 3). An implementation of IModelDescriptor is then responsible for
describing all green elements independently of the actual model. Furthermore,
it has to store the reference from Hitchhiker to Universe, because it is part of
one of the newly added elements. Fig. 8 shows our meta model for such model
descriptors.

Abbildung 8: Meta model for sub-models

The reference to the EClass points to the type the particular model descriptor
represents. In this case it would point to the EClass Book of the library model
(cf. Fig. 2). Moreover, there are three maps for a model descriptor:

1. The ERerefenceToElementReferenceMap takes EReferences as a key (the
reference from Hitchhiker to Universe, for example), and an IElementRe-
ference as the value. IElementReferences are symbolic references, which
address model elements without directly referring to them (cf. Sect. 3.1).

2. The EReferenceToDescriptorMap takes only containment references as
keys and contains other model descriptors. In the example, it contains
a descriptor for the element HitchhikersTricks.

3. The EAttributeToObjectMap contains the values for all attributes of the
particular element. For our example, it contains two entries: One with
the EAttribute catalogueNr (cf. library model in Fig. 2) as a key and the
String “543-210” as a value, and one with title as a key and the String
“Hitchhiker” as a value.

Next, a model-independent diff is shown in abstract syntax, i.e. as an object
diagram, in the bottom part of Fig. 9 which describes all added elements in the
example from Fig. 7: the IndepAddElementChange for the library element (the
StructureEmfReference again is an implementation of the IElementReference
interface) contains a model descriptor for all added elements. The relation bet-
ween the independent diff and the library model is shown in Fig. 9 using curved

12

3.3 Change dependencies lead to groups 3 DIFFING MODELS

arrows. The solid blue arrows (pointing to the library meta model) are refe-
rences to the library model as required by the descriptor. Values in the three
maps are represented as qualified associations, using the blue dashed library mo-
del elements as keys. The green arrows (pointing to the library models) again
represent symbolic references.

Abbildung 9: Connection between a model-independent diff (in abstract syntax)
and the actual models

Please note that the reference from Galaxy to Hitchhiker is added to an already
existing element, so it is not part of this particular change. But it depends on
the just explained change! We will discuss this issue later in Sect. 3.3.

Removals are handled the very same way, this is why sub-models are contained
in the abstract class IndepAddRemElementChange.

3.3 Change dependencies lead to groups

Unlike textual diffs, changes in models may depend on each other. To understand
this, it is important to understand the meaning of the terms diff and change.
As the name says, a diff just contains and describes the structural differences
between two files or models. In contrast, a change refers to the action of changing
something (resulting in a diff).

13

4 GENERALIZATION

If we take the example from before (Fig. 9 on page 13), there are two changes
made: the first includes a newly added sub-model containing the elements Hitch-
hiker, HitchhikerTricks, and a reference to the book Universe; the second just
includes a reference from the existing book Galaxy to the new book. The second
change obviously depends on the first one, because it uses one of its elements
– consequently, the second change is useless if the first one is not applied. We
decided to use these dependencies to logically group changes.

This is, of course, only a very simple example. But if we consider larger models
with a lot of changes that depend on each other, then it would be nice to
see structured groups which logically represent sets of independent changes.
Using the previously proposed meta model, it would be easily possible using
ChangeGroups. The idea is that ChangeGroups do not interfer with each other.
This of course opens up potential for further optimizations, e.g. sub-grouping.

4 Generalization

Normal diffs contain all differences between two models, usually as a whole
bunch of atomic changes. The example in Fig. 10 again shows the library with
some books. There are three changes which are structurally similar and each of
them produces an entry in a diff. Three new references point from a customer
to books, marked with the stereotype «add».

Abbildung 10: Similar changes: three new references

However, if this diff should be applied to another model (i.e. similar to a patch),
it requires exactly these three books. So it is not possible to apply this diff
to another model with different books, e.g. with different attributes. It might
be useful in some cases to precisely refer to particular model elements, but
in some cases it might be useful to weaken the precision of the target model
elements in order to create a diff that can be used similar to a patch for text-
files. For example, we could re-phrase our three changes to: new references were
added from the customer ’Joe’ to all books in the library the customer belongs
to.. Thus we weaken the description of the changes in such a way that it fits
for all atomic changes at once, in order to find a more concise and adequat

14

4.1 Referencing sets of elements 4 GENERALIZATION

represenation of these changes. Consequently, we can probably apply this change
to other models with other libraries even with different books. We call this kind
of weakening of changes generalization of changes. Next, we briefly mention
some other scenarious, and explain how we use symbolic references to obtain
this generalization.

More examples for generalizations

Starting from the example above, we would like to have one change describing
many references from a customer to many books. This is the first case of the
following list of possible generalized changes, which is not exhaustive but should
be enough for now:

• adding / removing many references to / from an element
(we have just seen an example of this case)

• adding / removing / changing a reference of many elements

• adding / removing / changing an attribute of many elements

• adding / removing a sub-model to / from many elements

• moving many elements from one place to another

The obvious advantage would be that such a change is more general and hence
applicable to much more models than just atomic changes. It is also more con-
cise and user-friendly than many atomic changes actually describing the same
intentional change.

On the other hand, generalizations do also have some drawbacks! If a change
addresses many elements, this set of elements might include some, which are
not intended to be part of the change – for example, there could be another
book in Fig. 10 for which there was not added a references. Thus, it might be
a good idea to specify exceptions, or in general, to have some kind of flexible
language to describe such sets. Moreover, bidirectionality might be lost – in
contrast to textual diffs: that is, it cannot easily be determined, whether and to
which elements such a generalized change has already been applied. The next
section proposes an idea of how a symbolic reference can be used to generalize
such a change.

4.1 Referencing sets of elements

In the example, three references were added – from the customer ’Joe’ to each
book in the library. Another way of describing that would be: New references
were added from the customer ’Joe’ to all books in the library the customer
belongs to. That statement explains the very same change but on a more general
level. The intention is to apply this change to more than only one concrete model,
e.g. for any book available in the library. Furthermore, the change is described
in a more compact, concise, and intuitive way.

15

4.1 Referencing sets of elements 4 GENERALIZATION

Abbildung 11: Symbolic references for resolving sets of elements

The change needs to resolve more than only one element, in particular all books
in the library. The example in Fig. 11 shows an IndepAddRefChange, which uses
ElementSetReferences as an implementation of symbolic references for this pur-
pose (see meta model in Fig. 3 for this context). The three classes at the top
are part of the library meta model. All other elements are concrete objects of a
change model as a UML object diagram which describe this generalized change.
The cyan colored references (curved arrows) are described in the meta model of
independent diffs. The left-most ElementSetReference contains an OCL conditi-
on, which, if resolved via the context, returns the customer Joe. The context is
yet another ElementSetReference, which resolves a library – in our example just
one library exists. The right-most ElementSetReference resolves all books of that
particular library, as described by its OCL condition “self.oclIsKindOf(Book)
and context.books.contains(self)”, where books is the containment between the
library and books at the top.

Implications for generalized changes

The example we have just seen emphasizes some assumptions and requirements
for generalized diffs:

• Symbolic references need to refer to a set of elements, not only one ele-
ment! This is why ID-based symbolic references do not work here and we
introduced ElementSetReferences.

16

4.2 Benefits and drawbacks 4 GENERALIZATION

• We somehow need a language to describe sets of elements. In our example,
we have used OCL conditions to describe the constraints the particular
elements have to fulfill.8

• However, not all uses of symbolic references are applicable for referring
to sets of elements: the symbolic references for describing a movement
(oldParent and newParent in the meta model) must not be sets of element,
but just one element.

4.2 Benefits and drawbacks

Is it worth the effort introducing yet more concepts for describing changes in
a model? Before answering this question, let us discuss the benefits for using
generalized changes:

• There is only one general change for many similar changes, which leads to
a more concise and compact form.

• General changes are applicable to much more models, because the language
for symbolic references describing sets of elements is powerful enough to
resolve elements even for different contexts.

However, there are some drawbacks:

• There is of course an overhead for constructing these changes: user inter-
action is probably required to correctly identify similar changes and to
combine them.

• We loose bidirectionality! We cannot say whether / how many of the ge-
neralized changes have already been applied to a particular model.

• If a change has more than one element set, the meaning of combining these
sets is ambiguous.E.g. what if the symbolic reference to the customer in
our example returns a set of elements as well? Do we want a cartesian
product? Or only specific customer-book pairs? So if we want to consider
multiple element sets, we probably need to define a relation for combining
these sets. For now, we leave this aspect open and only concentrate on
single element sets.

• Even if there is only one element set involved, the result can be interpreted
in different ways: e.g. a new element A should be aggregated to a set of
elements – will there be one A in total that is aggregated to all elements
in the set, or will there be one A for each element in the set? Again, we
leave this aspect open at this point.

8The EMF Query subproject offers an API to perform these kinds of queries on arbitrary
EMF models.

17

5 RELATED WORK

Conclusion

Generalized changes provide two very interesting improvements over atomic
changes: namely a more compact and concise form of describing sets of elements,
as well as much broader application scenarious due to a powerful language de-
scribing element sets. On the other hand, there are some important drawbacks
which may not be desirable in some cases – e.g. the loss of bidirectionality.
To conclude, one needs to decide when to use which constructs for describing
changes, depending on the context.

The next step is the application of generalized changes to other models, as
already denoted in Sect. 4.1. It is part of the second transformation of the
process outlined in Fig. 1 on page 4 and subject of future work.

5 Related Work

In [KKU08], we already presented and implemented such a model-independent
diff for a particular tool, namely the Enterprise Architect [Spa08]. However, the
diff was only based on unique IDs and implemented only for the meta model
of this particular tool. It supports automatic diff creation as a list of changes,
and a semi-automatic transfer (with conflict resolution) to other model versions.
Futhermore, two different types of models are supported, an early-phase analysis
and a platform specific design model; in parcitular, they can be synchronized
using these change lists.

The main purpose of EMF Compare [Tou07] is the support of diff & merge for
arbitrary models based on EMF. It provides a GUI for comparing and merging
models, including three-way-merge and conflict resolution. However, support for
patches (which can be seen as model-independent diffs) is not yet included but
scheduled for the next release.

The Rational Software Architect [IBM08] is also capable of diff & merge for
UML models which includes difference detection, visualization, conflict resolu-
tion, and merging. Nevertheless, it performs these operation only in-memory,
hence no persistence support exists. Moreover, logical grouping is missing – a
new association, for instance, produces three changes instead of one: the asso-
ciation itself as well as two association ends.

[CRP07] has a similar goal but a different strategy. First, they extend each class
in the meta model of the compared models with three new classes for the ad-
dition, deletion, and change of model elements. Second, the diff between two
models is computed and stored accordingly to the extended meta model. Third,
they create higher-order model transformations on these extended metamodels
to transfer diffs to other models. So their approach works for arbitrary models.
However, they did not consider conflicts so far, and their difference representa-
tion is not generalized.

18

LITERATUR

6 Summary

In this paper, we first discussed the main differences between text- and model-
based differencing. Then we pointed out the main challenges for model-based
diffing, as well as an approach of model-independent diffs. It uses sub-model des-
criptors to describe sub-models that have been added or removed (cf. Sect. 3.2),
and symbolic references to point to other model elements (cf. Sect. 3.1). These
constructs make the diff model-independent, i.e. the diff can be viewed and used
without having the models available it was created from.

In addition to that, we presented concepts for generalizing changes in order to
make them more concise and compact, and applicable to a broad scenario of
models. This has some advantages and disadvantages, as we have discussed in
Sect. 4.2.

Concerning the overall procedure described in the introduction (Fig. 1 on pa-
ge 4), we covered the concepts of model-independent diffs as well as the first
transformation. The second transformation, however, is future work.

Acknowledgements

I would like to thank my supervisor Ekkart Kindler for many helpful discussions
and advices.

Literatur

[CRP07] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. A
Metamodel Independent Approach to Difference Representation.
Journal of Object Technology, 6(9):165–185, 2007.

[emf08] Eclipse Modeling Framework. http://www.eclipse.org/
modeling/emf, 2008.

[FW07] Sabrina Förtsch and Bernhard Westfechtel. Differencing and Mer-
ging of Software Diagrams – State of the Art and Challenges. In
Joaquin Filipe, Markus Helfert, and Boris Shishkov, editors, Inter-
national Conference on Software and Data Technologies (ICSOFT),
Setubal (Portugal), volume 2. Institute for Systems and Technologies
for Information, Control and Communication, 2007.

[IBM08] IBM. Rational Software Architect. http://www.ibm.com/
software/awdtools/architect/swarchitect, 2008.

[KKU08] Ekkart Kindler, Patrick Könemann, and Ludger Unland. Diff-based
model synchronization in an industrial mdd process. Technical Re-
port IMM-Technical Report-2008-07, Technical University of Den-
mark, June 2008.

[Men02] Tom Mens. A state-of-the-art survey on software merging. IEEE
Transactions on Software Engineering, 28(5):449–462, May 2002.

19

http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://www.ibm.com/software/awdtools/architect/swarchitect
http://www.ibm.com/software/awdtools/architect/swarchitect

LITERATUR LITERATUR

[MES03] David MacKenzie, Paul Eggert, and Richard Stallman. Comparing
and Merging Files With Gnu Diff and Patch. Network Theory Ltd.,
2003.

[OMG06a] Object Management Group. Meta Object Facility (MOF) Co-
re Specification. http://www.omg.org/cgi-bin/doc?formal/
2006-01-01, January 2006.

[OMG06b] Object Management Group. Object Constraint Language Specifica-
tion, Version 2.0. http://www.omg.org/technology/documents/
formal/ocl.htm, May 2006.

[OMG07] Object Management Group. OMG Unified Modeling Language
(OMG UML), Superstructure, V2.1.2. Object Management Group,
November 2007.

[Spa08] Sparx Systems Pty Ltd, Victoria, Australia. EA User Guide, 2008.
Referring to version 7.5.

[Tou07] Antoine Toulmé. Presentation of EMF Compare Utility. In Eclip-
seCon, March 2007. http://www.eclipse.org/emft/projects/
compare.

20

http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.eclipse.org/emft/projects/compare
http://www.eclipse.org/emft/projects/compare

	Introduction
	Text- vs. model-based diffs
	Diffing models
	Symbolic references
	Descriptor for sub-models
	Change dependencies lead to groups

	Generalization
	Referencing sets of elements
	Benefits and drawbacks

	Related Work
	Summary

