Nanoscale Characterisation of Thin Film Adhesion Layers

Heinig, Mario Frederik; Todeschini, Matteo; Sukham, Johneph; Malureanu, Radu; Bastos da Silva Fanta, Alice; Jansen, Henri; Wagner, Jakob Birkedal; Kadkhodazadeh, Shima

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Nanoscale Characterisation of Thin Film Adhesion Layers

Mario Frederik Heinig\(^1\), Matteo Todeschini\(^2\), Johneph Sukham\(^2\), Radu Malureanu\(^2\), Alice Bastos da Silva Fanta\(^1\), Henri Jansen\(^1\), Jakob Birkedal Wagner\(^1\), Shima Kadkhodazadeh\(^1\)

1 DTU Cen/Danchip, Technical University of Denmark, Kgs. Lyngby, Denmark
2 DTU Fotonik, Technical University of Denmark, Kgs. Lyngby, Denmark
* E-mail: marhein@dtu.dk

Motivation and background

In the field of plasmonic and microelectronic devices, the fabrication of noble metal films on dielectric or semiconductor substrates requires an adhesive intermediate layer that guarantees the stability of the structure. The most common materials for this purpose are the metallic adhesion layers Cr or Ti. However, they deteriorate the optical characteristics of ultra-thin and ultra-smooth layers for plasmonic waveguides and hyperbolic metamaterials. Here, we investigate the adhesion mechanism between gold and silicon oxide substrates, comparing the classical Cr and Ti adhesion layers with the aminosilane APTMS (3-aminopropyl)trimethoxysilane, to establish an improved understanding of the structural effects and material properties.

Samples

Au films were deposited on silicon oxide TEM grids and wafers, using two different deposition techniques, E-beam evaporation Wordentec GCL800 and Sputtering system LEIKER. The single layers on TEM grids were examined in plan-view geometry and the double layers on wafers were examined in cross-sectional geometry.

Chemistry and optical properties

Electron energy-loss spectroscopy (EELS) scans of TEM window grids with damping effects of the metallic adhesion layers, while the organosilane contains the plasmonic signal.

Morphology

- Atomic force microscopy (AFM):

- ADF STEM:

- EELS spectra

Conclusion and Outlook

We conducted comprehensive studies on effects of adhesion layers on Au thin films and propagating plasmonic modes. The results present promising tendencies of the ultrathin film coverage, grain size distribution, film quality and plasmonic interactions. Further high-resolution TEM (HRTEM), transmission Kikuchi diffraction (TKD) and electron energy-loss spectroscopy (EELS) will be used to understand and compare the morphology, microstructure and chemistry of the thin films. After elaboration the most promising fabrication method, further organosilanes will be investigated with respect to optical and mechanical properties in order to avoid the damping influences of metallic adhesion layers for more advanced plasmonic applications in the future.

References