Excess Higgs to gauge boson couplings

Trinhammer, Ole L.

Published in:
Epl

Link to article, DOI:
10.1209/0295-5075/125/41001

Publication date:
2019

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
https://doi.org/10.1209/0295-5075/125/41001

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
LETTER • OPEN ACCESS

Excess Higgs to gauge boson couplings

To cite this article: Ole L. Trinhammer 2019 EPL 125 41001

View the article online for updates and enhancements.
Excess Higgs to gauge boson couplings

Ole L. Trinhammer

Department of Physics, Technical University of Denmark - Fysikvej bld 307, DK-2800 Kongens Lyngby, Denmark, EU

received 4 January 2019; accepted 13 February 2019
published online 19 March 2019

PACS 14.70.Fm - W bosons
PACS 14.70.Hp - Z bosons
PACS 12.40.Yx - Hadron mass models and calculations

Abstract – We predict slightly enhanced signal strengths in the Higgs coupling to the intermediate W and Z gauge bosons with a three percent excess relative to those of the Standard Model. The base of the prediction is a slightly different electroweak energy scale. The modified electroweak energy scale follows from an intrinsic conception of baryon dynamics that links to electroweak decays. Here electroweak interactions are fostered by a spontaneous symmetry break in baryonic configurations described on an intrinsic U(3) configuration space. The electroweak flavour degrees of freedom become intermingled with the colour degrees of freedom via a spontaneous U(2) pairing of two toroidal degrees of freedom in the intrinsic dynamics. The intrinsic potential thereby shapes the Higgs potential. This leads to the up-down quark mixing matrix element modifying the gauge boson couplings relative to the Standard Model expectations.

Introduction. – The Standard Model of particle physics [1] relies on the Higgs mechanism [2–5] to lend masses to three of its four gauge fields. The sizes of the masses \(m_W \) and \(m_Z \) of the related field quanta follow from the strengths of the coupling constants of the electroweak theory and from the size of the electroweak energy scale. In the same token follow the couplings to the Higgs particle of the three massive gauge fields \(W^\pm, Z \). The crucial parameters are two coupling strengths \(g, g' \) in the electroweak Lagrangian and two coefficients \(\mu, \lambda \) in the Higgs potential [6] together with the electroweak energy scale \(v \) related to the vacuum expectation value \(\varphi_0 = v/\sqrt{2} \) of the Higgs field after symmetry break. The first four of these parameters are usually considered as independent fitting parameters with \(v \) to follow from \(\mu \) and \(\lambda \). Experimentally \(v_{SM} \) is determined from the Fermi coupling constant \(G_F \) in muon decay and \(v \) is determined from the Higgs mass. The relation among \(v, \mu \) and \(\lambda \) can then be used to predict the experimental value of \(\lambda \) which determines the Higgs self-coupling.

In the present work we make do with just two parameters, namely the fine structure coupling \(\alpha \) to set the coupling strengths and the electron mass \(m_e \) at the base of the energy scale. This is possible by connecting strong and electroweak scales and structures and in that way settle the scale and the shape of the Higgs potential. We settle the electroweak scale by fitting the Higgs potential to an intrinsic potential from baryon dynamics where flavour degrees of freedom get intermingled with colour degrees of freedom. This leads to the relations [7]

\[
\frac{v}{\sqrt{2}} = \frac{2\pi}{\alpha(m_W)} \frac{\pi}{\alpha_e} m_e c^2
\]

(1)

and

\[
\mu = m_H c^2 = \frac{1}{2} \frac{2\pi}{\alpha(m_W)} \frac{\pi}{\alpha_e} m_e c^2.
\]

(2)

The Standard Model electroweak scale \(v_{SM} \) comes out as

\[
\sqrt{\frac{\hbar c^3}{G_F \mu V^2}} = v_{SM} = v\sqrt{V_{ud}}
\]

(3)

because our \(v \) is determined from neutron beta decay where the Fermi constant is

\[
G_{F\beta} = G_F V_{ud}.
\]

(4)
The relation (4) is most easily understood from an effective Lagrangian for beta decay described on p. 311 in [8],

$$G_E \frac{\sqrt{2}}{\pi}[\gamma_{\lambda}(1 + \gamma_5)\nu_\mu + \pi(1 + \gamma_5)\nu_{\mu}]J^\lambda + \text{h.c.},$$ \hspace{1cm} (5)

where “h.c.” stands for the Hermitian conjugate and where the hadronic “current” is

$$J^\lambda = \left(\begin{array}{c} \pi \\ \tau \end{array}\right)^T \gamma^\lambda (1 + \gamma_5)V \left(\begin{array}{c} d \\ s \\ b \end{array}\right)$$ \hspace{1cm} (6)

with quark mixing matrix [1,9]

$$V = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right).$$ \hspace{1cm} (7)

The matrix element V_{ud} generalizes the Cabibbo angle term $\cos \theta_C \approx V_{ud}$ in

$$J^\lambda = \pi \gamma^\lambda (1 + \gamma_5)d \cos \theta_C + \pi \gamma^\lambda (1 + \gamma_5)s \sin \theta_C$$ \hspace{1cm} (8)

from baryon b and top flavours t were introduced.

For the signal strength of the Higgs to gauge bosons relative to the Standard Model we find in the present work

$$\rho_{HWW} = \rho_{HZZ} = \frac{1}{V_{ud}} \approx 1.03.$$ \hspace{1cm} (9)

We thus expect a three percent excess in the $H \to WW^*$ and $H \to ZZ^*$ signal strengths.

From strong to electroweak energy scale. – Our strong energy scale $\Lambda = \hbar c/a$ is introduced from a model for the baryon mass spectrum where baryons are considered as stationary states on an intrinsic $U(3)$ configuration space [10],

$$\frac{\hbar c}{a} \left[-\frac{1}{2} \Delta + \frac{1}{2} d^2(c, u) \right] \Psi(u) = E \Psi(u).$$ \hspace{1cm} (10)

The configuration variable $u \in U(3)$ is excitable by nine generators $T_j, S_j, M_j, j = 1, 2, 3$ related to kinematic generators in laboratory space. Thus,

$$u = e^{i(\theta_1 T_1 + \alpha_j S_j + \beta_j M_j)}/h, \quad \theta_1, \alpha_j, \beta_j \in \mathbb{R}$$ \hspace{1cm} (11)

with diagonal colour generators iT_j proportional to parameter momenta p_j,

$$iT_j = \frac{\partial}{\partial \theta_j}, \quad p_j = -i\hbar \frac{\partial}{\partial \theta_j}. \hspace{1cm} (12)$$

The off-diagonal generators are S_j for intrinsic spin and M_j are like Laplace-Runge-Lenz generators (see p. 236 in [11]) and take care of flavour, e.g.,

$$S_3 = a \theta_1 p_2 - a \theta_2 p_1, \quad M_3/h = \theta_1 \theta_2 + \frac{a^2}{h^2} p_1 p_2.$$ \hspace{1cm} (13)

![Fig. 1: Projection from intrinsic space to periodic potential (16) in parameter space. The length scale a for baryon dynamics is $\approx 1\text{fm}$. Figure taken from [12].](image1)

![Fig. 2: Left and right: reduced zone schemes (p. 160 in [13]) for Bloch wave numbers κ for the neutron state (left) and the proton state (right) [7]. Middle: Higgs potential (solid, blue line) matching the Manton-inspired potential [14] (dashed, red line) and the Wilson-inspired potential [15] (dotted, green line). The Manton- and Wilson-inspired potentials yield the same value for the Higgs mass and the electroweak energy scale, whereas only the Manton-inspired potential gives a satisfactory reproduction of the baryon spectrum [7]. Figure adapted from [16].](image2)
Strictly speaking we see the Higgs potential as shaped to forth order by the periodic intrinsic potential (16), see fig. 2.

We get the length scale a from the classical electron radius r_e as a projection of the intrinsic toroidal degrees of freedom, see fig. 1,

\[x_j = a \theta_j, \]

Thus,

\[r_e = a \pi, \quad e^2/4\pi \epsilon_0 r_e \equiv m_e e^2. \]

We think heuristically of the electron as a “peel-off” from the neutron, leaving a “charge-scattered” proton [10]. If we stay in this topological picture, we should note that the structure in the peeling-off is guided by the centrifugal potential

\[C = \sum_{i<j, k \neq i,j} \frac{(S^2_i + M^2_k)/\hbar^2}{8 \sin^2 \frac{1}{2}(\theta_i - \theta_j)} \]

hidden in the Laplacian [17]

\[\Delta = \sum_{j=1}^3 \frac{\partial}{\partial \theta_j} \frac{\partial^2}{\partial \theta_j^2} - \sum_{i<j, k \neq i,j} \frac{(S^2_i + M^2_k)/\hbar^2}{8 \sin^2 \frac{1}{2}(\theta_i - \theta_j)} \]

Here the “Jacobian”

\[J = \prod_{i<j}^3 2 \sin \frac{1}{2}(\theta_i - \theta_j) \]

to yield a fit to fourth order (see fig. 2)

\[V(\phi) = \frac{1}{2} \delta^2 \phi_0^2 - \frac{1}{2} \mu^2 \phi^2 + \frac{1}{4} \lambda^2 \phi^4, \]

with coefficients

\[\delta^2 = \frac{1}{4} \phi_0^2, \quad \mu^2 = \frac{1}{2} \phi_0^2, \quad \lambda^2 = \frac{1}{2}. \]

Coupling strengths. – With the Higgs field vacuum expectation value after symmetry break

\[\varphi_0 = \frac{2\pi}{\alpha(m_W)} \Lambda \]

to yield from (23), we can determine the size of the Higgs couplings to the massive gauge bosons. We let the generalized derivative

\[D_\mu = \partial_\mu - ig' B_\mu I_0 - ig W_\mu \cdot I \]

with a priori gauge fields B_\mu and W_\mu, W_\mu' act on the Higgs field

\[\phi = \frac{1}{\sqrt{2}} \left(\begin{array}{c} v \phi_0(x) \\ \phi \phi_0 \end{array} \right) \]

with I_0 = \frac{\tau_k}{2}, k = 0, 1, 2, 3 where \(\tau_k, k = 1, 2, 3\) are 2 \times 2 isospin matrices and \(\tau_0\) is the identity matrix, i.e.,

\[Y = -2I_0 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right), \quad 2I_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \]

\[2I_2 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right), \quad 2I_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right). \]

We square to get for the Lagrangian

\[(D_\mu \phi)^\dagger (D_\mu \phi) \in \mathcal{L}. \]

In the first step we have

\[[\partial_\mu - ig' B_\mu I_0 - ig W_\mu \cdot I] \Lambda \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v + h(x) \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \partial_\mu h \\ v + h(x) \end{array} \right) \]

\[- \frac{i}{2\sqrt{2}} \left(\begin{array}{cc} g'(W_\mu^1 + gW_{\mu'}^3) & g(W_\mu^1 - iW_{\mu'}^3) \\ g(W_{\mu'}^1 - iW_\mu^3) & g(W_{\mu'}^1 + gW_\mu^3) \end{array} \right) \left(\begin{array}{c} 0 \\ v + h(x) \end{array} \right). \]

The square is structured as

\[(D_\mu \phi)^\dagger (D_\mu \phi) \]

which reduces to (cf. p. 276 in [18])

\[(D_\mu \phi)^\dagger (D_\mu \phi) = \frac{1}{2} \partial^\mu h \partial_\mu h + \frac{(v + h)^2}{8} \left(\begin{array}{c} g'(W_\mu^1) \end{array} \right)^2 + \left(W_{\mu'}^1 \right)^2 \]

\[+ \frac{(v + h)^2}{8} [g' B_\mu - g W_{\mu'}^3]^2. \]

1We use the fine structure coupling at W energies here and in (23) because W is involved virtually in the neutron decay.
The fields W^1 and W^2 combine into particle and antiparticle fields of opposite electric charges

$$W^\pm = \frac{1}{\sqrt{2}}(W^1 \mp iW^2),$$

see, e.g., Aitchison and Hey, p. 383 in [18] and p. 186 in [19]. Thus,

$$\frac{(v + h)^2}{8}g^2[[W^1]^2 + (W^2)^2] = \frac{(v + h)^2}{4}g^2W^\mu W^\nu$$
and we get the mass squared

$$m_W^2 = \frac{g^2v^2}{4}$$
for the fields W^+ and W^-. From (36) we also read off the coupling for $H \rightarrow WW^*$

$$g_{HWW} = \frac{2v}{4}g = \frac{2m_W^2c^4}{v}.$$ Both the mass and the coupling expressions look standard, but now expressed in v instead of in v_{SM}.

The last term in (34) is not diagonal in the mass terms for the fields B and W^3 because of the two different coupling strengths involved. It diagonalizes into two redefined boson fields, see, for example, [20] and p. 277 in [18]

$$Z \equiv \frac{g'B - gW^3}{\sqrt{g'^2 + g^2}}, \quad A \equiv \frac{gB + gW^3}{\sqrt{g'^2 + g^2}}.$$ The second-order term is thereby rewritten as

$$\frac{(v + h)^2}{8}[g'B_\mu - gW^3_\mu]^2 = \frac{(v + h)^2}{4}(g'^2 + g^2)Z_\mu Z^\mu$$
with masses squared

$$m_Z^2 = \frac{(g'^2 + g^2)v^2}{4}, \quad m_A^2c^4 = 0.$$ From (40) we read off the coupling for $H \rightarrow ZZ^*$

$$g_{HZZ} = \frac{2v}{4}(g'^2 + g^2) = \frac{2m_Z^2c^4}{v}.$$ Again we note that the expression uses our v

$$v = \sqrt{2}\varphi_0 = \sqrt{2}\frac{2\pi}{\alpha(m_W)}\frac{\pi}{\alpha_e}m_ec^2$$
with φ_0 determined from (27).

Electroweak mixing angle. — As implied in the previous section, we want the set of four gauge fields to contain the massless $U(1)$ gauge field A, of quantum electrodynamics but we have no guarantee that A, equals the a priori $U(1)$ gauge field B because both generators I_0 and I_3 are diagonal. We thus anticipate a transformation from the a priori fields B, W^3 into physical spacetime fields Z, A, given by

$$\begin{pmatrix} Z \\ A \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} W^3 \\ B \end{pmatrix} \equiv \Theta \begin{pmatrix} W^3 \\ B \end{pmatrix}.$$ The condition on the electroweak mixing angle θ_W is that A, remains massless after the spontaneous symmetry break in accordance with the infinite range of electromagnetic interactions. This requirement puts a constraint on the ratio between the two coupling constants g, g'. To find the constraint, we write the mass term coefficient on ϕ in (33) from the diagonal generators in (30) as

$$(gW^3, g'B) \begin{pmatrix} I_3 \\ I_0 \end{pmatrix} = \begin{pmatrix} (W^3, B) \begin{pmatrix} g_3 \\ g_1 \end{pmatrix} \\ (W^3, B)\Theta^{-1} \begin{pmatrix} g_3 \\ g_1 \end{pmatrix} \end{pmatrix}.$$ Expressed in the “rotated” fields Z, A, this means

$$(gW^3, g'B) \begin{pmatrix} I_3 \\ I_0 \end{pmatrix} = \begin{pmatrix} Z \\ A \end{pmatrix}^T \Theta \begin{pmatrix} g_3 \\ g_1 \end{pmatrix}.$$ From this we read off the Z and A, field generators

$$I_Z = g\cos \theta_W I_3 + g'\sin \theta_W I_0,$$
$$I_A = -g\sin \theta_W I_3 + g'\cos \theta_W I_0$$ and require from the vanishing mass term in (34)

$$\frac{1}{2}m_\gamma^2c^4 = (\phi_0 I_\gamma)^T I_\gamma \phi_0 = 0$$ which is fulfilled provided

$$g\sin \theta_W + g'\cos \theta_W = 0 \quad \text{or} \quad \tan \theta_W = -\frac{g'}{g}.$$ To determine the absolute coupling strengths g, g' we look again at the photon field generator I_γ. It couples to I_3 with the strength $-g\sin \theta_W$ and to I_0 with the strength $g'\cos \theta_W$. If we assume both these strengths to equal the elementary unit of charge e characteristic of quantum electrodynamics, we get the relations

$$g = -|e|/ \sin \theta_W, \quad g' = |e|/ \cos \theta_W,$$ where we have chosen a sign convention such that $g, g' > 0$ and $\sin \theta_W < 0$.

The electroweak mixing angle θ_W remains an ad hoc parameter in the Standard Model which is why the Z (and W) masses could not be predicted accurately. Given W_3, the Z mass follows

$$\frac{1}{2}m_Z^2 = (\phi_0 I_Z)^T I_Z \phi_0 = \frac{g^2 + g'^2}{4} \varphi_0^2$$ with I_Z from (47). We namely have in the “lower” component of I_Z

$$-\frac{1}{2}g \cos \theta_W + \frac{1}{2}g' \sin \theta_W =$$
$$\frac{1}{2}g' \frac{g}{\sqrt{g'^2 + g^2}} + \frac{1}{2} \frac{-g'}{\sqrt{g'^2 + g^2}}$$
$$= -\frac{1}{2} \frac{g'}{\sqrt{g'^2 + g^2}}.$$
With this and (50) we get for the Z mass
\[\frac{1}{2}m_Z^2 c^4 = \frac{e^2}{4 \sin^2 \theta_W \cos^2 \theta_W} \phi_0^2. \] (53)

The charged boson fields
\[W^\pm_\mu = \frac{1}{\sqrt{2}} (W^1_\mu \mp iW^2_\mu) \]
in (35) expand on
\[I_{\pm} = (I_1 \pm iI_2). \] (54)
With these rephrasings similar to p. 248 in [21], we have
\[g(W^1 I_1 + W^2 I_2) = \frac{g}{\sqrt{2}} (W^+ I_+ + W^- I_-). \] (55)
To get the masses of W^\pm we exploit the isospin algebra
\[\frac{1}{2}(I_+ I_- + I_- I_+) = I_1^2 + I_2^2 = I^2 - I_3^2. \] (56)
Applied to the Higgs field this yields
\[(I^2 - I_3^2) \phi_0 = \left(\frac{1}{2} \left(\frac{1}{2} - 1 \right) - \frac{1}{2} \right) \phi_0 = \frac{1}{2} \phi_0 \] (57)
and —after some lines of algebra squaring (55)— we get
\[m^2_W c^4 = g^2 \frac{1}{2} \phi_0^2 = \frac{g^2 v^2}{4} \rightarrow m_W c^2 = 80.36(2) \text{ GeV}. \] (58)

For the numerical value we used $g^2 = \frac{e^2}{\sin^2 \theta_W}$, i.e., $g^2 = 4\pi \alpha_e / 4\pi \alpha_e$ with $\alpha_e = e^2 / (4\pi \epsilon_0 \hbar c) = 1/137.035999139(31)$ [1] and we anticipated $\sin^2 \theta_W = 2/9$ from (62) [22]. Further, we used the electroweak energy scale ν determined by (39) with $\alpha^{-1}(m_W) = 127.984(18)$ obtained by sliding [16] from $\alpha^{-1}(m_Z) = 127.950(10)$ [1]. We might have started from α_e and worked iteratively towards $\alpha(m_W)$. Since the fine structure coupling only changes logarithmically with energy, this iteration quickly converges.

Weinberg mixing angle from quark generators. We hint at the origin of the electroweak mixing angle. We express the I_0 and I_3 of (47) in the equivalent base of u and d flavour quark generators T_u, T_d [10,22],
\[T_u = \begin{pmatrix} \frac{2}{3} & 0 \\ 0 & -1 \end{pmatrix}, \quad T_d = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] (59)
acting in the 2-dimensional representation space of the Higgs field, where
\[\phi_0 = \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} \] (60)
and where we suppress the “inactive” component of the quark generators to have their two-dimensional editions. We then have
\[2I_0 = \frac{2}{3} T_u - \frac{5}{3} T_d, \quad 2I_3 = \frac{4}{3} T_u - \frac{1}{3} T_d. \] (61)

We now substitute θ_W in (47) by θ_{ud} defined by
\[\cos^2 \theta_{ud} = \text{Tr} T_u T_d = \frac{7}{9} \] (62)
as in [22]. This yields the Z boson mass from rewriting I_Z in (47) and letting it operate on ϕ_0. Thus,
\[2I_Z = g \cos \theta_{ud} \left(\frac{4}{3} T_u - \frac{1}{3} T_d \right) + g' \sin \theta_{ud} \left(\frac{2}{3} T_u - \frac{5}{3} T_d \right) \] (63)
operating on ϕ_0 means
\[\left(\frac{2I_Z}{g \cos \theta_{ud}} \right) \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} = \left[\left(\frac{4}{3} T_u - \frac{1}{3} T_d \right) + \frac{g'}{g} \tan \theta_{ud} \left(\frac{2}{3} T_u - \frac{5}{3} T_d \right) \right] \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix}. \] (64)
Exploiting $\tan \theta_{ud} = -\frac{g'}{g}$ from the zero mass constraint on the photon field in (48) we rewrite to get
\[\left(\frac{2I_Z}{g \cos \theta_{ud}} \right) \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} = \left[\left(\frac{4}{3} - \frac{2}{3} \tan^2 \theta_{ud} \right) T_u - \left(\frac{1}{3} - \frac{5}{3} \tan^2 \theta_{ud} \right) T_d \right] \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} \] (65)
and, thus,
\[\left(\frac{2I_Z}{g \cos \theta_{ud}} \right) \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} = \left[-\frac{4}{3} + \frac{2}{3} \tan^2 \theta_{ud} \right] + \left(\frac{1}{3} - \frac{5}{3} \tan^2 \theta_{ud} \right) \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} \] (66)
which reduces to
\[\left(\frac{2I_Z}{g \cos \theta_{ud}} \right) \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} = -1 - \tan^2 \theta_{ud} \varphi_0 = \frac{-1}{\cos^2 \theta_{ud}} \varphi_0. \] (67)

Multiplying by $\cos \theta_{ud}$ and squaring we get
\[\left[\left(\frac{2I_Z}{g} \right) \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} \right]^2 = \frac{1}{\cos^2 \theta_{ud}} \varphi_0^2. \] (68)

With
\[\frac{1}{2} m_Z^2 c^4 = (I_Z \phi_0)^2 = \left(\frac{g}{2} \right)^2 \left[\left(\frac{2I_Z}{g} \right) \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix} \right]^2 \] (69)
we get
\[m_Z^2 c^4 = 2 \left(\frac{g}{2} \right)^2 \frac{1}{\cos^2 \theta_{ud}} \varphi_0^2 = \left(\frac{g^2 v^2}{4 \cos^2 \theta_{ud}} \right) \] (70)

\footnote{The experimentally extracted $\sin^2 \theta_W$ depends on the renormalization prescription, see p. 163 in [1].}
in accordance with standard expressions (51). For \(\cos^2 \theta_{ud} = \frac{2}{3} \) and \(v \) from (43) eq. (70) yields

\[
m_Z^2 c^2 = 91.12(2) \text{ GeV}.
\]

Combining (58) with (70) we get as expected to compare

\[
\frac{m^2_W}{m_Z^2} = \frac{1}{14 \cos^2 \theta_{ud}} = 0.7777 \ldots
\]

\[
\approx \left(\frac{80.379(12) \text{ GeV}}{91.1876(21) \text{ GeV}} \right)^2 = 0.7771(3).
\]

(72)

Interpreted as the result of iterations, the values in (71) and (72) with their per mille level discrepancies show the consistency of using \(T_u \) and \(T_d \) as relevant projection generators.

It is as if the selection of the mixing angle \(\theta_W = \theta_{ud} \) is guided by the fixation of the quark generators from the strong interaction sector. This may be a coincidence but we rather think that it is a consequence of the interrelation between the electroweak and strong interactions as they meet in the neutron to proton decay and in other weak baryonic decays. The suspicion is supported by the derivation of the Cabibbo angle from intermingled flavour and colour degrees of freedom in [22].

Gauge boson couplings relative to the standard model. – The Higgs to gauge boson couplings (38) and (42) may look completely like those predicted from the Standard Model. But one should note, that our \(v \) differs from \(v_{\text{SM}} \) by \(\sqrt{V_{ud}} \) as mentioned in (3). If we take as an example the quartic Higgs self-coupling, the Standard Model expression in the notation of (25) is [1]

\[
\lambda_{\text{SM}}^2 = \left(\frac{m_H}{v_{\text{SM}}} \right)^2.
\]

(73)

and the intrinsic prediction \(\lambda^2 = 1/2 \) from (26) if expressed in terms of \(\mu \) and \(\lambda \) is

\[
\lambda^2 = \left(\frac{\mu}{\lambda v} \right)^2.
\]

(74)

Comparing these two expressions gives

\[
\frac{g_{HHH}}{g_{HHH,SM}} = \frac{\lambda^2}{\lambda_{SM}^2} = \frac{v_{\text{SM}}}{v^2} = V_{ud}.
\]

(75)

The standard expressions in (38) and (42)

\[
g_{W W} = \frac{2m_W^2 c^4}{v}, \quad g_{Z Z} = \frac{2m_Z^2 c^4}{v}
\]

(76)

hide the role of \(v \) in the boson masses. If in (76) we used instead the expressions from (37) and (41)

\[
m_W^2 = \frac{g v}{2}, \quad m_Z^2 = \frac{(\sqrt{g^2 + g'^2}) v}{2}
\]

(77)

we would infer for signal strength \(\mu \sim \Gamma(H \rightarrow W W) \sim g_{W W}^2 \) [23]

\[
\mu_{W W} = \left(\frac{g_{W W}}{g_{W W,SM}} \right)^2 = \left(\frac{g v/2}{v_{\text{SM}}/2} \right)^2
\]

\[
= \left(\frac{v}{v_{\text{SM}}} \right)^2 = \frac{1}{V_{ud}} \approx 1.03
\]

(78)

and likewise for \(\mu_{Z Z} \). This corresponds to a three percent increase in the Higgs to gauge boson signal strength relative to Standard Model expectations. A comparison with experiment must await higher statistics than what is presently available from the LHC [24].

Conclusion. – In our intrinsic conception of electroweak decays, an interrelation between strong and electroweak degrees of freedom is shaped specifically by the requirement of paired Bloch phase factors with half odd-integer Bloch wave vectors which select a \(U(2) \) subgroup in the baryonic \(U(3) \) configuration space. From this conception, we find the Higgs field couplings modified by the up-down quark mixing matrix element and thus expect the Higgs particle to couple slightly more strongly to the intermediate gauge bosons \(W \) and \(Z \) than predicted in the Standard Model.

I thank MOGENS STIBIUS JENSEN and HENRIK GEORG BOHR for interest in the intrinsic viewpoint. I thank the Technical University of Denmark for an inspiring working environment.

REFERENCES

Excess Higgs to gauge boson couplings

