Artificial Intelligence for Wind Energy (AI4Wind): A state of the art report

Feng, Ju

Publication date:
2019

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Artificial Intelligence for Wind Energy (AI4Wind)
A state of the art report

Ju Feng
DTU Wind Energy E-0180
ISBN: 978-87-93549-48-7
February 2019
Summary (max 2000 characters):
This report is written for work package 3 on Artificial Intelligence in Wind Energy in the 2018 cross-cutting activity project Big Data and Digitalization, which is funded by DTU Wind Energy. In this report, the background is first introduced in Chapter 1. Chapter 2 reflects on the big picture of Artificial Intelligence. Chapter 3 reviews the state of the art of Artificial Intelligence applications in wind energy. The prospects and challenges of applying Artificial Intelligence in the wind energy sector are discussed in Chapter 4. Finally, Chapter 5 presents some conclusions.
Artificial Intelligence for Wind Energy (AI4Wind)
A state of the art report

Ju Feng\textsuperscript{1, 2}

February 15, 2019

\textsuperscript{1}Department of Wind Energy, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
\textsuperscript{2}Email: jufen@dtu.dk
Abstract

This report is written for work package 3 on Artificial Intelligence in Wind Energy in the 2018 cross-cutting activity project Big Data and Digitalization, which is funded by DTU Wind Energy (Department of Wind Energy, Technical University of Denmark). In this report, the background is first introduced in Chapter 1. Chapter 2 reflects on the big picture of Artificial Intelligence. Chapter 3 reviews the state of the art of Artificial Intelligence applications in wind energy. The prospects and challenges of applying Artificial Intelligence in the wind energy sector are discussed in Chapter 4. Finally, Chapter 5 presents some conclusions.
# Contents

Preface  

1 Introduction  

2 AI: the big picture  
  2.1 The era we live in  
  2.2 The role of AI  
  2.3 The story of AI  
  2.4 AI, Machine Learning and Big Data  
  2.5 Challenges of AI  

3 AI4Wind: the state of the art  
  3.1 Literature review  
  3.2 Industrial stories  

4 AI4Wind: the prospects and challenges  

5 Conclusions  

Bibliography  

Appendix
Preface

It is difficult to overlook Artificial Intelligence nowadays. α-Go self-driving cars, Google Assistant\textsuperscript{1} face and speech recognition, ... Exciting new technologies powered by Artificial Intelligence are emerging at an astonishing pace. Companies like Baidu came out with slogans like "All in AI". Research teams from tech giants released various open source Artificial Intelligence/Machine Learning platforms, such as TensorFlow from Google and PyTorch from Facebook. After tremendous success in various sectors, Artificial Intelligence seems to be on the track of entering into more sectors of business and society and changing our life more deeply.

How will AI change the wind energy sector? For a researcher who has worked in wind energy for several years, this is a natural question to ask. Luckily, my institute DTU Wind Energy, one of the world’s leading institutes specialized in wind energy, started an internal funded cross-cutting project on Big Data and Digitalization in 2018 and I received the opportunity to investigate the state of the art of applying Artificial Intelligence in wind energy.

This report compiles the results of the work I have done in this project and serves as the deliverable of work package 3 on Artificial Intelligence in Wind Energy. This work package is part of the 2018 cross-cutting project and focuses mainly on a state of the art review of the field. After some background introduced in Chapter \textsuperscript{1} some reflections on the big picture of Artificial Intelligence is given in Chapter \textsuperscript{2}. Chapter \textsuperscript{3} reviews the state of the art of Artificial Intelligence applications in wind energy. The prospects and challenges of applying Artificial Intelligence in the wind energy sector are discussed in Chapter \textsuperscript{4}. Finally, some conclusions are given in Chapter \textsuperscript{5}.

The funding from DTU Wind Energy is greatly appreciated. I also want to thank my colleagues Ignacio Martí, head of offshore wind energy programme, Nikolay Krasimirov Dimitrov, manager of the cross-cutting project, as well as those colleagues who attended the “Artificial Intelligence for Wind Energy” seminar. We had some fruitful discussions on this fascinating topic.

Specially, I would like to thank my colleague Matias Sessarego for reviewing and helping with editing of a draft of this report.

Last but not least, I want to acknowledge all the authors of the materials (books, articles, papers, reports, ...) that form the basis of this report, which I have read, reviewed, cited and quoted in this report.

Kgs. Lyngby, Denmark

Ju Feng

February, 2019

\textsuperscript{1}An artificial intelligence-powered virtual assistant developed by Google that is primarily available on mobile and smart home devices.
Chapter 1

Introduction

In an online note addressed to the graduates of 2017 (Gates [2017]), Bill Gates, the founder of Microsoft, shared some of his thoughts on career advice. He wrote:

If I were starting out today and looking for the same kind of opportunity to make a big impact in the world, I would consider three fields. One is artificial intelligence. We have only begun to tap into all the ways it will make people’s lives more productive and creative. The second is energy, because making it clean, affordable, and reliable will be essential for fighting poverty and climate change. The third is the biosciences, which are ripe with opportunities to help people live longer, healthier lives.

Among the three promising fields Gates identified, two of the them point to an exciting interplay: using Artificial Intelligence (AI) in the battle of transforming our energy sector.

Energy has long been the key backbone of modern societies. A well-functioning energy sector provides crucial inputs to nearly all economic or societal activities of human beings. As the world’s population and the concerns on climate change increase further, the need for a clean, affordable, and reliable energy system has become more and more urgent, as pointed out by Gates. The same need is also identified by United Nations (UN) as one of the 17 global goals for sustainable development, as shown in Fig. 1.1.

![Figure 1.1: UN sustainable development goals, source: UN foundation](https://example.com/fig1.png)

According to UN, the aim of Goal 7, Clean and Affordable Energy, is to “ensure access to affordable, reliable, sustainable, and modern energy for all”. This goal will be achieved mainly by exploring renewable energy solutions, as UN explained on the website of global goals:
Renewable energy solutions are becoming cheaper, more reliable and more efficient every day. Our current reliance on fossil fuels is unsustainable and harmful to the planet, which is why we have to change the way we produce and consume energy. Implementing these new energy solutions as fast as possible is essential to counter climate change, one of the biggest threats to our own survival.

In its 2017 version of World Energy Outlook ([IEA 2017](https://www.iea.org/)), International Energy Agency (IEA) identified “the rapid deployment and falling costs of clean energy technologies” as one of the four large-scale shifts in the global energy system. As the costs of renewables become cheaper, the share of renewable energy in the world’s energy mix will continue to increase. IEA projects that “Renewables capture two-thirds of global investment in power plants to 2040 as they become, for many countries, the least-costly source of new generation.” This is well evidenced since renewables contribute more to the global average annual net capacity additions than coal, gas and nuclear combined in the period 2010-2016. Of course, it is natural to expect the dominance of renewables in the newly added capacity becomes even stronger in the future. The historical and projected composition figure of annual net capacity additions in Word Energy Outlook 2017 ([IEA 2017](https://www.iea.org/)) as shown in Fig. 1.2 confirms the expectation.

![Figure 1.2: Global average annual net capacity additions by type, source: IEA](https://www.iea.org/)

According to the latest renewable capacity highlights ([IRENA 2018](https://www.irena.org/)) of International Renewable Energy Agency (IRENA), at the end of 2017, the total capacity of renewable energy generation in the world amounts to 2,179 GW. Among various renewable energy sources, hydro, wind and solar have the largest shares of the global total, with installed capacities of 1,152 GW, 514 GW and 397 GW, respectively ([IRENA 2018](https://www.irena.org/)). The detailed compositions is shown in Fig. 1.3

![Figure 1.3: Renewable generation capacity by energy sources, source: IRENA](https://www.irena.org/)

Clearly, the trend of increasing share of renewable energy in the world's energy mix will continue and likely strengthen in the coming decades. While there are different types of renewable energy sources,
wind and solar will most likely be the leading two players in the newly added renewable generation capacity, as suggested by IEA’s projection.

Nevertheless, for this trend to continue and the projection made by IEA (see Fig. 1.2) to become reality, a constant improvement of renewable energy technologies and a further decrease of their cost will be required.

One way to meet this requirement that has immense potential is by use of Artificial Intelligence (AI). The potential of AI has been well identified by industries in renewable energy, especially for wind and solar. For example, in “Making renewables smarter: The benefits, risks, and future of artificial intelligence in solar and wind energy”, a position paper published in 2017 (DNV GL [2017]), DNV GL concludes:

The rate of development within artificial intelligence and its application is extremely high. For the solar and wind industries, which already have benefited from artificial intelligence applications in weather forecasting and control, the positive impact (in the relative near-term) will be on inspections and certification, with further-term impacts on supply chain and even transportation and construction. How quickly these impacts occur is an issue of debate—but they surely will occur.

This report will first reflect on the big picture of AI in Chapter 2, then examine the state of the art of AI in wind energy in Chapter 3, identify the related prospects and challenges in Chapter 4, and finally conclude with Chapter 5.
Chapter 2

AI: the big picture

2.1 The era we live in

We are living in an era in which fascinating new technologies are emerging at an astonishing pace. These new technologies, such as Internet of Things, self-driving cars, 3D printing, deep learning and quantum computing, have shown tremendous potential in transforming business and society.

In view of the fast development of these new technologies, how should we characterize this era in a historical context? Various terms or concepts have been proposed by different scholars and institutes to describe this era.

In Germany, the Industry-Science Research Alliance launched the strategic initiative “Industrie 4.0” in early 2011 and thus popularized the term “Industry 4.0” [2013]. Industry 4.0 can be viewed as the fourth industrial revolution based on Cyber-Physical Systems (CPS), while the first three industrial revolutions are results of mechanisation, electricity and IT, respectively, as shown in Fig. 2.1.

![Figure 2.1: Four industrial revolutions, source: Forschungsunion and acatech 2013](image)

Forschungsunion and acatech 2013
In the final report of the Industrie 4.0 Working Group (Forschungsunion and acatech [2013]), Industry 4.0 (or Industrie 4.0 in German) is defined as the product of emerging of Cyber-Physical Systems (CPS), which results from “the convergence of the physical world and the virtual world (cyberspace)”. In their definition, the use of Internet of Things and Services, i.e., network of resources, information, objects and people, is of central importance:

In essence, Industrie 4.0 will involve the technical integration of CPS into manufacturing and logistics and the use of the Internet of Things and Services in industrial processes. This will have implications for value creation, business models, downstream services and work organisation.

They also identified the huge potential of Industry 4.0 especially for: “Meeting individual customer requirements; Flexibility; Optimised decision-taking; Resource productivity and efficiency; Creating value opportunities through new services; Responding to demographic change in the workplace; Work-Life-Balance; A high-wage economy that is still competitive” (Forschungsunion and acatech [2013]).

“The Fourth Industrial Revolution” has also been used by other people and institutes to describe the current era. For example, in his recent book “The Fourth Industrial Revolution”, Klaus Schwab, the founder and executive chairman of the World Economic Forum, argued that we are now at the beginning of the fourth industrial revolution, which “is characterized by a much more ubiquitous and mobile internet, by smaller and more powerful sensors that have become cheaper, and by artificial intelligence and machine learning”, and also includes breakthroughs in broader areas “ranging from gene sequencing to nanotechnology, from renewables to quantum computing” (Schwab [2017]).

Comparing with the concept of Cyber-Physical Systems (CPS) in “Industry 4.0”, Schwab’s view cover also the biological domain as he said in the book (Schwab [2017]):

It is the fusion of these technologies and their interaction across the physical, digital and biological domains that make the fourth industrial revolution fundamentally different from previous revolutions.

Another popular term is “the second machine age”, proposed by Massachusetts Institute of Technology (MIT) Professors Erik Brynjolfsson and Andrew McAfee (Brynjolfsson and McAfee [2014]). In their 2014 book “The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies”, they argued that we are now in the second machine age when machine is replacing our mental power, whereas the first machine age initiated by the industrial revolution is represented by our physical power replaced by machine. As they stated in their book (Brynjolfsson and McAfee [2014]):

Now comes the second machine age. Computers and other digital advances are doing for mental power—the ability to use our brains to understand and shape our environments—what the steam engine and its descendants did for muscle power. They’re allowing us to blow past previous limitations and taking us into new territory. ... mental power is at least as important for progress and development—for mastering our physical and intellectual environment to get things done—as physical power. So a vast and unprecedented boost to mental power should be a great boost to humanity, just as the earlier boost to physical power so clearly was.

Unlike the two stage division of technological history proposed by Brynjolfsson and McAfee, a more detailed and systematic periodization comes from Carlota Perez, a distinguished economic historian specialized in technical change and the historical context of growth and development. She is the author of the influential book “Technological Revolutions and Financial Capital: the Dynamics of Bubbles and Golden Ages” (Perez [2002]), which focused on the role that finance plays in the diffusion of technological revolutions.

Following Austrian economist Joseph Schumpeter’s concept of “creative destruction” (Schumpeter [1942]) and theory of business cycles and development (Schumpeter [1939]), Perez analyzed the history of technological progress and economic growth in the past 250 years. Based on her research, she periodized the history into five successive technological revolutions, each of which is represented by a ‘great surge of development’. As defined in her book (Perez [2002]), a great surge of development is:

1 This refers to the first industrial revolution began in Great Britain from around 1760, as shown in Fig. 2.1.
... the process by which a technological revolution and its paradigm propagate across the economy, leading to structural changes in production, distribution, communication and consumption as well as to profound and qualitative changes in society. The process evolves from small beginnings, in restricted sectors and geographic regions, and ends up encompassing the bulk of activities in the core country or countries and diffusing out towards further and further peripheries, depending on the capacity of the transport and communications infrastructures.

From the great surges analysis, each technological revolution is divided into an **Installation period** and **Deployment period**, split by a major crash or the so-called **Turning point**, as shown in Fig. 2.2.

![Figure 2.2: The life cycle of a great surge, source: Perez [2002](image)](image)

According to Perez (Perez [2002]), these three stages can be defined as:

- **Installation period**: “the time when the new technologies irrupt in a maturing economy and advance like a bulldozer disrupting the established fabric and articulating new industrial networks, setting up new infrastructures and spreading new and superior ways of doing things. At the beginning of that period, the revolution is a small fact and a big promise; at the end, the new paradigm is a significant force, having overcome the resistance of the old paradigm and being ready to serve as propeller of widespread growth.”

- **Turning point**: “(from Installation to Deployment) is a crucial crossroads, usually a serious recession, involving a recomposition of the whole system, in particular of the regulatory context that enables the resumption of growth and the full fructification of the technological revolution.”

- **Deployment period**: “when the fabric of the whole economy is rewoven and reshaped by the modernizing power of the triumphant paradigm, which then becomes normal best practice, enabling the full unfolding of its wealth generating potential.”

Based on the above definition, Perez identified the following five technological revolutions:

- **The ‘Industrial Revolution’**, from 1771 in Britain
- **Age of Steam and Railways**, from 1829 in Britain and spread to Continent and USA
- **Age of Steel, Electricity and Heavy Engineering**, from 1875 in USA and Germany
- **Age of Oil, the Automobile and Mass Production**, from 1908 in USA, later spreading to Europe
- Age of Information and Communications Technology (ICT), from 1971 in USA and spreading to Europe and Asia

These five revolutions are shown in Fig. 2.3. According to Perez, the world today is still in the fifth technological revolution, i.e., ICT revolution, which means the current existing progresses in fields such as AI, big data, Internet of Things and self-driving cars are essentially products of the deployment stage of the ICT revolution. In this stage, the “paradigm shift” brought by the more thorough penetration of ICT technologies starts to truly transform and reshape the whole economy and society.

Based on this insight, Perez proposed the so-called “Smart Green Growth” as shown in Fig. 2.4. According to Perez, the world today is still in the fifth technological revolution, i.e., ICT revolution, which means the current existing progresses in fields such as AI, big data, Internet of Things and self-driving cars are essentially products of the deployment stage of the ICT revolution. In this stage, the “paradigm shift” brought by the more thorough penetration of ICT technologies starts to truly transform and reshape the whole economy and society.

Based on this insight, Perez proposed the so-called “Smart Green Growth” as shown in Fig. 2.4.

Figure 2.3: Five technological revolutions, source: Carlota Perez

Figure 2.4: Smart green growth: a potential global positive-sum game, source: Carlota Perez
Smart green growth is a set of systematic policies Perez recommended for the world, aiming to fully unleash the potential of the ICT technological revolution while addressing the problems the world is facing now with environment, climate, and global inequality. If this direction of development is fully realized, we will enter a new global sustainable “golden age”, comparable to the postwar golden age brought by the fourth technological revolution (Perez [2017]).

Among the different views regarding our era described above, the one proposed by Perez appears the most comprehensive and systematic. The smart green growth path she recommended has already shown part of its potential in countries like Denmark where sustainability is highly valued.

### 2.2 The role of AI

No matter which term is used to describe the era we are living in, being it ‘The Second Machine Age’, ‘The Fourth Industrial Revolution’ or ‘The Fifth Technological Revolutions’, one core technology that holds tremendous potential in transforming nearly all aspects of our economy, society and life is AI. This becomes increasingly evident in recent years when universal digitalization, ubiquitous connectivity, and ever-cheaper data storage capacity allow AI technologies start to reach their full potentials.

Similar conclusion on AI has also been reached by many other researchers and institutes.

In a 2013 report entitled “Disruptive technologies: Advances that will transform life, business, and the global economy”, McKinsey Global Institute identified twelve technologies that they believe “have significant potential to drive economic impact and disruption by 2025” (McKinsey Global Institute [2013]). These twelve technologies and their estimated potential economics impacts are shown in Fig. 2.5.

![Figure 2.5: Twelve disruptive technologies identified in 2013, source: McKinsey Global Institute](image)

The first six technologies shown in Fig. 2.5 can actually be classified into the general term of ICT.
technologies, while ICT technologies are also likely to play important roles in the remaining six technologies. The second disruptive technology, i.e., “Automation of knowledge work” is especially relevant for the discussion of AI, as stated in the executive summary of this report:

Advances in artificial intelligence, machine learning, and natural user interfaces (e.g., voice recognition) are making it possible to automate many knowledge worker tasks that have long been regarded as impossible or impractical for machines to perform. For instance, some computers can answer “unstructured” questions (i.e., those posed in ordinary language, rather than precisely written as software queries), so employees or customers without specialized training can get information on their own. This opens up possibilities for sweeping change in how knowledge work is organized and performed. Sophisticated analytics tools can be used to augment the talents of highly skilled employees, and as more knowledge worker tasks can be done by machine, it is also possible that some types of jobs could become fully automated.

Clearly, this definition echoes well with Brynjolfsson and McAfee’s idea of ‘Second Machine age’ in which machines replace our mental power. In a more general manner, “Automation of knowledge work” can also be viewed as the application of AI technologies. The key applications identified by McKinsey Global Institute include:

- Smart learning in education
- Diagnostics and drug discovery in health care
- Discovery, contracts/patents in legal sector
- Investments and accounting in finance sector

Of course, the above list is far from comprehensive. AI technologies hold huge potential for nearly all sectors in our economy and business. This is also true for the energy sector, in which renewable energy sources such as wind and solar are transforming the landscape of the world energy system and benefiting from AI. Nowadays, digitalization is occurring in the whole process of energy use for our world, from extracting, storing, transporting to utilizing energy. Digitalization essentially has settled the playground for AI technologies to realize their promising benefits for making a new generation energy system that is sustainable, smart, flexible and reliable.

2.3 The story of AI

The birth of AI is commonly dated back to 1956. During the summer of 1956, a two-month workshop was organized at Dartmouth College in Hanover, New Hampshire, USA by John McCarthy, Marvin Minsky, and eight other researchers who would later become the pioneers in the field of AI (Russell and Norvig [2010]). In the original proposal for this workshop, where the term “Artificial Intelligence” was first used, McCarthy et al. (McCarthy et al. [1955]) stated:

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

Following the Dartmouth workshop, the field of AI has received great enthusiasm and expectations, also generous public funding for around 20 years. In this early stage, AI researchers have made some bold predictions, such as the one made by Herbert Simon in 1957 (Russell and Norvig [2010]):

It is not my aim to surprise or shock you—but the simplest way I can summarize is to say that there are now in the world machines that think, that learn and that create. Moreover,
their ability to do these things is going to increase rapidly until—in a visible future—the range of problems they can handle will be coextensive with the range to which the human mind has been applied.

Although large progresses have been made for idealized problems in a small scale, AI failed to meet the great expectations and solve realistic problems in a large scale. This failure also results in the so-called AI winter, when governments stopped to fund AI research. Since then, the field of AI has gone through several periods of ups and downs. Quite recently, AI has become a popular area again with slogans such as “AI in all” or “All in AI” emerge. This round of AI success can be largely attributed to the now highly increased computation capacity, large amount of data and thus successful applications of Machine Learning in many real-life problems.

In the first chapter of his book published in 2011, “Introduction to Artificial Intelligence”, Wolfgang Ertel (Ertel [2011]) made a detailed list of milestones in the development of AI from 1931 to 2011, which are copied here as follows:

- **1931** The Austrian Kurt Gödel shows that in first-order predicate logic all true statements are derivable. In higher-order logics, on the other hand, there are true statements that are unprovable.
- **1937** Alan Turing points out the limits of intelligent machines with the halting problem.
- **1943** McCulloch and Pitts model neural networks and make the connection to propositional logic.
- **1950** Alan Turing defines machine intelligence with the Turing test and writes about learning machines and genetic algorithms.
- **1951** Marvin Minsky develops a neural network machine. With 3000 vacuum tubes he simulates 40 neurons.
- **1955** Arthur Samuel (IBM) builds a learning chess program that plays better than its developer.
- **1956** McCarthy organizes a conference in Dartmouth College. Here the name Artificial Intelligence was first introduced. Newell and Simon of Carnegie Mellon University (CMU) present the Logic Theorist, the first symbol-processing computer program.
- **1958** McCarthy invents at MIT (Massachusetts Institute of Technology) the high-level language LISP. He writes programs that are capable of modifying themselves.
- **1959** Gelernter (IBM) builds the Geometry Theorem Prover.
- **1961** The General Problem Solver (GPS) by Newell and Simon imitates human thought.
- **1963** McCarthy founds the AI Lab at Stanford University.
- **1965** Robinson invents the resolution calculus for predicate logic.
- **1966** Weizenbaum’s program Eliza carries out dialog with people in natural language.
- **1969** Minsky and Papert show in their book Perceptrons that the perceptron, a very simple neural network, can only represent linear functions.
- **1972** French scientist Alain Colmerauer invents the logic programming language PROLOG. British physician de Dombal develops an expert system for diagnosis of acute abdominal pain. It goes unnoticed in the mainstream AI community of the time.
- **1976** Shortliffe and Buchanan develop MYCIN, an expert system for diagnosis of infectious diseases, which is capable of dealing with uncertainty.
- **1981** Japan begins, at great expense, the “Fifth Generation Project” with the goal of building a powerful PROLOG machine.
- **1982** R1, the expert system for configuring computers, saves Digital Equipment Corporation 40 million dollars per year.
• 1986 Renaissance of neural networks through, among others, Rumelhart, Hinton and Sejnowski. The system Nettalk learns to read texts aloud.

• 1990 Pearl, Cheeseman, Whittaker, Spiegelhalter bring probability theory into AI with Bayesian networks. Multi-agent systems become popular.

• 1992 Tesauros TD-gammon program demonstrates the advantages of reinforcement learning.

• 1993 Worldwide RoboCup initiative to build soccer-playing autonomous robots.

• 1995 From statistical learning theory, Vapnik develops support vector machines, which are very important today.

• 1997 IBM’s chess computer Deep Blue defeats the chess world champion Gary Kasparov. First international RoboCup competition in Japan.

• 2003 The robots in RoboCup demonstrate impressively what AI and robotics are capable of achieving.

• 2006 Service robotics becomes a major AI research area.

• 2010 Autonomous robots start learning their policies.

• 2011 IBM’s natural language understanding and question answering program “Watson” defeats two human champions in the U.S. television quiz show “Jeopardy!”.

Fig. 2.6 from SYZYGY [SYZYGY 2017] illustrates a concise and updated time line of the development AI. Note that in this figure, the birth of AI is dated back to 1955, when McCarthy et al. wrote the original proposal for the AI workshop and the term “Artificial Intelligence” was first used (McCarthy et al. 1955).

For a more detailed history of AI, one could consult the relevant chapters of the books referred above (Russell and Norvig 2010, Ertel 2011) or the historical book on AI by Pamela McCorduck (McCorduck 2004).
2.4 AI, Machine Learning and Big Data

What is AI? This is not a trivial question to answer as there is no standard definition of the term Artificial Intelligence. According to the book by Erte [Erte [2011]], the first definition of AI was given by John McCarthy roughly as follows:

The goal of AI is to develop machines that behave as though they were intelligent.

Apparently this definition leaves a large space for interpretation regarding what it means to behave intelligently, therefore it is not so applicable for real-life applications.

In one of the most widely used textbook on AI [Russel and Norvig [2010]], Russel and Norvig collected eight definitions of AI and classified them into four categories, as shown in Fig. 2.7.

<table>
<thead>
<tr>
<th>Thinking Humanly</th>
<th>Thinking Rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>“The exciting new effort to make computers think ... machines with minds, in the full and literal sense.” (Hangeland, 1985)</td>
<td>“The study of mental faculties through the use of computational models.” (Chamiak and McDermott, 1985)</td>
</tr>
<tr>
<td>“[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning ...” (Bellman, 1978)</td>
<td>“The study of the computations that make it possible to perceive, reason, and act.” (Winston, 1992)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acting Humanly</th>
<th>Acting Rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>“The art of creating machines that perform functions that require intelligence when performed by people.” (Kurzweil, 1990)</td>
<td>“Computational Intelligence is the study of the design of intelligent agents.” (Poole et al., 1998)</td>
</tr>
<tr>
<td>“The study of how to make computers do things at which, at the moment, people are better.” (Rich and Knight, 1991)</td>
<td>“AI ... is concerned with intelligent behavior in artifacts.” (Nilsson, 1998)</td>
</tr>
</tbody>
</table>

Figure 2.7: Some definitions of AI organized into four categories, source: Russell and Norvig [2010]

They explained their classification in their book as follows:

The definitions on top are concerned with thought processes and reasoning, whereas the ones on the bottom address behavior. The definitions on the left measure success in terms of fidelity to human performance, whereas the ones on the right measure against an ideal performance measure, called rationality. A system is rational if it does the “right thing,” given what it knows.

Russel and Norvig adopted the “acting rationally” approach in their book, which they called as “the rational agent approach”. The rational agent approach is also the most workable definition as it avoids the complicated task of defining what is thinking and what it means to be humanly, given the fact that we are still far from scientifically understanding human mind and intelligence.

In Russel and Norvig’s definition, an agent is “just something that acts”, which is also expected to “operate autonomously, perceive their environment, persist over a prolonged time period, adapt to change, and create and pursue goals.” Thus a rational agent is an agent that “acts so as to achieve the best outcome or, when there is uncertainty, the best expected outcome.”

For example, a rational agent can have a model of “how the world works” in the agent’s context and a utility function to measure how good is the outcome from its acts. This example is the so-called “model-based, utility-based agent” and is shown in Fig. 2.8.

According to this definition, many fields can be recognized as applications of AI. For example, in a recent textbook published in 2016, “Introduction to Artificial Intelligence”, Mariusz Flasinski [Flasinski 2016] discussed the following application areas:
Perception and Pattern Recognition

Knowledge Representation

Problem Solving

Reasoning

Decision Making

Planning

Learning

Natural Language Processing (NLP)

Manipulation and Locomotion

Social Intelligence, Emotional Intelligence and Creativity

Of course, this list can never be complete and static, since the scope of AI has been changing constantly. Actually, there is a phenomenon known as "AI effect", which describes that as soon as AI achieves something, that something tends to become regarded as not AI. As Pamela McCorduck puts in her book on history of AI [McCorduck 2004]:

It’s part of the history of the field of artificial intelligence that every time somebody figured out how to make a computer do something—play good checkers, solve simple but relatively informal problems—there was chorus of critics to say, “that’s not thinking”.

Kevin Kelly, the founding executive editor of Wired magazine, also wrote in a Wired article in 2014 [Kelly 2014]:

In the past, we would have said only a superintelligent AI could drive a car, or beat a human at Jeopardy! or chess. But once AI did each of those things, we considered that achievement obviously mechanical and hardly worth the label of true intelligence. Every success in AI redefines it.

Thus, according to Douglas Hofstadter’s quotation of Tesler [Hofstadter 1979], AI is “whatever hasn’t been done yet”. Of course, this distinction, i.e., regarding those have been done as not AI while those haven’t been done as AI, is not so useful, as it defines AI as a target that we can never meet.

In view of this, Katherine Bailey proposed in a 2016 article [Bailey 2016] a different distinction as shown in Fig. 2.9:

To understand this distinction, the classification of AI into weak and strong AI is explained as follows:
• Weak AI: machines could possibly behave intelligently.

• Strong AI: such machines would count as having actual minds (as opposed to simulated minds).

A similar classification that focuses on the application is narrow and general AI, which can be described as:

• Narrow AI: a machine with the ability to apply intelligence to only specific problems.

• General AI: a machine with the ability to apply intelligence to any problem.

Clearly the rational agent approach adopted by Russel and Norvig (Russell and Norvig [2010]) belongs to weak and narrow AI, as this approach focuses on “acting rationally” and currently a rational agent can only be well defined for specific application fields.

After examining some successful applications of AI until nowadays, from self-driving cars to AlphaGo, we can confidently conclude that we are still very far away from the strong and general AI. This is also a conclusion that most AI researchers and practitioners would agree. Thus, the popular fear in typical scientific fictions and mass media nowadays that a super-intelligent AI will gain consciousness and take over the world is unfounded, at least for the foreseeable future.

Besides AI, there are two other buzz words as popular as AI, which are “Machine Learning” and “Big Data”. How are these three terms related? The best answer is given by Andrew Ng in the rocket metaphor as shown in Fig. 2.10.

Figure 2.10: The AI rocket metaphor by Andrew Ng, source: [link]
Andrew Ng, former VP and Chief Scientist at Baidu, co-founder of Coursera, and adjunct professor at Stanford University, is one of the most famous AI researchers in recent years. He once described the relationship between AI, Machine Learning and Big Data as follows:

"AI is akin to building a rocket ship. You need a huge engine and a lot of fuel. The rocket engine is the learning algorithms but the fuel is the huge amounts of data we can feed to these algorithms."

According to this metaphor, AI’s success largely relies on the advancement of Machine Learning algorithms and the huge amounts of data, i.e., so-called Big Data. Similar conclusion has also been reached by Kevin Kelly in his 2014 article entitled “The three breakthroughs that have finally unleashed AI on the World” (Kelly [2014]). The three recent breakthroughs he identified that have unleashed the long-awaited arrival of AI are:

- **Cheap parallel computation** (especially clusters of GPUs that enable running neural networks in parallel)
- **Big Data** (massive databases, self-tracking, web cookies, online footprints, terabytes of storage, decades of search results, Wikipedia, and the entire digital universe)
- **Better algorithms** (such as deep learning algorithms)

As defined in by Tom Mitchell (Mitchell [1997]), Machine Learning is “the study of computer algorithms that improve automatically through experience”, which can be viewed as a sub field of AI. The relationship between AI, Machine Learning and Deep Learning can be described in the diagram in Fig. 2.11 while Big Data can be viewed as essential inputs to these technologies.

![Relationship between AI, Machine Learning and Deep Learning](KDnuggets)

In general, Machine Learning algorithms can be classified into three categories (Russell and Norvig [2010]):

- **Supervised Learning**: the agent observes some example input–output pairs and learns a function that maps from input to output.
- **Unsupervised learning**: the agent learns patterns in the input even though no explicit feedback is supplied.
- **Reinforcement learning**: the agent learns from a series of reinforcements — rewards or punishments.
Currently, the most widely used and mature machine learning techniques belong mainly to the category of supervised learning. Thus, current machine learning is best at A to B mapping.

In the position paper published in 2017 (DNV GL [2017]), DNV GL listed five common supervised learning algorithms and three common unsupervised learning algorithms in two figures, which are copied here in Figs. 2.12 and 2.13.

![Generalized Linear Models (GLM)](image)
- **GENERALIZED LINEAR MODELS (GLM)**
  - An advanced form of linear regression that supports different probability distributions and link functions, enabling the analyst to model the data more effectively. Enhanced with a grid search, GLM is a hybrid of classical statistics and the most advanced machine learning.

![Decision Trees](image)
- **DECISION TREES**
  - A method using a set of rules to split a population of data into progressively smaller segments that are homogeneous with respect to the target variable.

![Random Forests](image)
- **RANDOM FORESTS**
  - A popular ensemble learning method that trains many decision trees and then averages across the trees to develop a prediction. This averaging process produces a more generalizable solution and filters out random noise in the data.

![Gradient Boosting Machine (GBM)](image)
- **GRADIENT BOOSTING MACHINE (GBM)**
  - A method that produces a prediction model by training a sequence of decision trees, where successive trees adjust for prediction errors in previous trees.

![Deep Learning](image)
- **DEEP LEARNING**
  - An approach that models high-level patterns in data as complex multi-layered artificial neural networks. Deep learning is the most general way to model a problem; and it has the potential to solve the most challenging problems in machine learning (see box, "Deep Learning").

![Principal Components Analysis (PCA)](image)
- **PRINCIPAL COMPONENTS ANALYSIS (OR DIMENSION REDUCTION)**
  - Principal components analysis evaluates a set of raw features and reduces them to informative indices that are independent of one another. As renewable systems capture more data with the addition of more sensors, PCA can help identify the data that provide real informational value for a particular problem.

![Clustering](image)
- **CLUSTERING**
  - This technique groups objects into clusters that are like one another in various metrics. There are many different clustering algorithms; the most widely used is k-means.

![Anomaly Detection](image)
- **ANOMALY DETECTION**
  - In fields like security and fraud, it is not possible to investigate exhaustively every transaction—so we usually want to flag the most unusual transactions in the most systematic way. The supervised technique of deep learning also can be used for anomaly detection.

Figure 2.12: Five common supervised learning algorithms, source: [DNV GL 2017](#)

Figure 2.13: Three common unsupervised learning algorithms, source: [DNV GL 2017](#)
2.5 Challenges of AI

In recent years, AI has demonstrated its potential in various successful stories and attracted tremendous interest among researchers, entrepreneurs, government officials, and also citizens who have increasingly benefited from the applications of AI.

Nevertheless, AI’s further success will encounter many challenges in the future. One challenge comes from society’s fear of a super intelligent AI which (who) will take control over the world, although this fear is unfounded. Other challenges are largely due to its lack of rigorous theoretical basis if compared with more mature scientific disciplines such as physics. The lack of rigorous theoretical basis will likely show stronger effects when AI moves further into safety or health crucial application fields.

Examining the current successful applications of AI (mainly ML), we find two facets:

- **The beautiful facet**: it works well!
- **The scary facet**: we hardly know why it works!

There is a view that ML (or AI) has become a form of “alchemy”, proposed by Ali Rahimi in a speech given in NIPS 2017. Note that NIPS, i.e., Conference on Neural Information Processing Systems, is one of the most prestigious AI conferences held annually.

As described by Matthew Hutson in an article in Science Magazine, “AI researchers allege that machine learning is alchemy” (Hutson 2018a):

> Speaking at an AI conference, Ali Rahimi charged that machine learning algorithms ... have become a form of “alchemy.” Researchers, he said, do not know why some algorithms work and others don’t, nor do they have rigorous criteria for choosing one AI architecture over another.

A different view held by another famous AI researcher, Yann LeCun, is that AI is engineering. As Mathew Hutson put in the same article:

> Yann LeCun, Facebook’s chief AI scientist in New York City, worries that shifting too much effort away from bleeding-edge techniques toward core understanding could slow innovation and discourage AI’s real-world adoption. “It’s not alchemy, it’s engineering,” he says. “Engineering is messy.”

While whichever of these two views is more correct is up for discussion, one of the fundamental limitations of the current AI/ML techniques is undeniable: the lack or the insufficiency of interpretability. As stated in an article “Is Artificial Intelligence Permanently Inscrutable?” (Bornstein 2016):

> Modern learning algorithms show a trade-off between human interpretability, or explainability, and their accuracy. Deep learning is both the most accurate and the least interpretable.

Bornstein also showed this trade-off for some widely used AI/ML techniques in a figure, as copied here in Fig. 2.14.

The problem of interpretability also shows in the challenges brought by the so called “adversarial examples”. Adversarial examples are inputs/examples deliberately formed by applying small but intentionally worst-case perturbations to some otherwise normal examples. These examples can fool many ML models including deep learning models and lead the models output an incorrect answer with high confidence (Goodfellow et al. 2014). One of such example is shown in Fig. 2.15.

---

2The speech can be found on YouTube: [https://www.youtube.com/watch?v=x7psGHgatGM](https://www.youtube.com/watch?v=x7psGHgatGM)
Figure 2.14: Explainability vs. prediction accuracy for different AI/ML techniques, source: Bornstein [2016]

Figure 2.15: A normal picture of panda when added specifically added noise is classified as a gibbon by a neural network (GoogLeNet), source: Goodfellow et al. [2014]

More adversarial examples as included in a recent article published in the Science magazine, “Hackers easily fool artificial intelligences” (Hutson [2018b]), are shown in Fig. 2.16

Figure 2.16: More adversarial examples, source: Hutson [2018b]

Apparently this kind of vulnerability puts serious security concerns when applying AI/ML techniques to certain fields, as have been addressed in the article mentioned above (Hutson [2018b]).

In a recent UC Berkeley article (Geng and Veerapaneni [2018]), “Tricking Neural Networks: Create
your own Adversarial Examples”, Daniel Geng and Rishi Veerapaneni compared adversarial examples to a common human phenomenon, optical illusions:

You can understand adversarial examples by thinking of them as optical illusions for neural networks. In the same way optical illusions can trick the human brain, adversarial examples can trick neural networks.

Of course, the possibility of tricking some of the state-of-the-art AI/ML models by intentionally made adversarial examples reminds us that our understandings of AI/ML methods are still very limited. The limitations of AI and the possible attacks it might encounter must be carefully studied before an AI/ML system is used in some critical real-life applications. As concluded by Daniel Geng and Rishi Veerapaneni in the above mentioned article (Geng and Veerapaneni [2018]):

As we move toward a future that incorporates more and more neural networks and deep learning algorithms in our daily lives we have to be careful to remember that these models can be fooled very easily. Despite the fact that neural networks are to some extent biologically inspired and have near (or super) human capabilities in a wide variety of tasks, adversarial examples teach us that their method of operation is nothing like how real biological creatures work. As we’ve seen neural networks can fail quite easily and catastrophically, in ways that are completely alien to us humans. ... All in all, adversarial examples should humble us. They show us that although we have made great leaps and bounds there is still much that we do not know.
Chapter 3

AI4Wind: the state of the art

Bringing AI to the field of wind energy is not a new idea. Back in 1985, McAnulty reviewed the possible application of AI (also called as expert systems in the article) to wind power problem, in a paper entitled “The next generation - intelligent wind mills?” (McAnulty 1985). In the introduction section of the paper, McAnulty wrote:

Both wind energy and artificial intelligence are fairly trendy topics, with AI slightly ahead at the moment. Could it be that, besides their shared trendiness, they might have some deeper relationship? Time will tell, of course, but I would like to draw attention to a few ideas that could prompt further investigation.

In this paper, McAnulty made the distinction of “strong AI” and “weak AI”, identified the need of “vast amounts of data”, and described two ways of dealing with uncertainty: “Bayesian statistics” and “Fuzzy set theory”. The potential applications for weak AI in wind energy that he suggested include: “fault diagnosis”, “site/machine type selection” and “maintenance scheduling”. Looking from more than three decades later, we can conclude that McAnulty had made a quite precise prediction regarding the future of AI4Wind (Artificial Intelligence for Wind Energy), maybe just too ahead of the time in a certain degree.

While after 1985 wind energy has gone through stages of rapid development and merged as one of the crucial players in the world’s energy mix, AI has experienced a relatively silent period. But as discussed in the previous chapter, AI has now become a trendy topic in recent years and gained tremendous momentum and interest again.

Nevertheless, the application of AI in wind energy field has been studied in a huge amount of literature and also successfully demonstrated in various industrial cases. It is also likely that AI4Wind is going to receive even more attention and bring various benefits for the further development and deployment of wind energy.

In this chapter, the state of the art in AI4Wind will be reviewed, by first analyzing the published papers with the highest impacts, and then describing two successful industrial cases.

3.1 Literature review

To find the relevant literature on AI4Wind, Scopus is used, which is “[the largest abstract and citation database of peer-reviewed literature: scientific journals, books and conference proceedings]”. A programmatic approach is employed to search the database and find the relevant literature, based on an open source Python-based API-Wrapper (API stands for application programming interface) to access Scopus. This tool can be found at: https://github.com/scopus-api/scopus

Using the tool mentioned above, a Python script is written to search the Scopus database through queries with specified keywords, which are chosen to cover the field of AI4Wind. After this, a large amount of papers are found. However, among these found papers there are mismatches, i.e., papers that don’t really deal with AI4Wind. On the other hand, the found papers are far from being comprehensive,
since it is impossible to find all papers in AI4Wind, as there is no combination of keywords that can do this perfectly.

After retrieving the information (including title, author, journal/conference title, year, citation count, abstract, etc.) of the AI4Wind papers, a threshold on average citation per year is set to find the papers with high impact. Note that the average citations per year is chosen as a convenient metric to measure impact, not because it is the best way but because it is an objective and quantitative way. When calculating the average citations per year, the month that a paper is published is considered by counting one month as 1/12 year. To exclude those “false positives”, i.e., papers that matches the keywords criterion and citation threshold but are not in the field of AI4Wind, a manual examination is done by checking the title and abstract of each paper. After this step, the highly cited AI4Wind papers are selected. The whole process can be shown in flowchart in Fig. 3.1.

Figure 3.1: The process of selecting focused papers

The keyword criterion and citation threshold for finding the papers are listed in Table 3.1.

Table 3.1: Selection of highly cited AI4Wind papers

| Papers on AI4Wind (based on Scopus search through API @ March 21, 2018) |
|--------------------------|-------------------------------------------------|
| Criterion | Title(wind) and Title-Abs-Key(intelligence or neural or ANN or AI or learning or data mining or big data) |
| Total | 4172 (there are false positive and false negative) |
| Highly cited | 288 (≥ 5 citations per year since publication according to Scopus) |

Out of 4172 AI4Wind papers, 288 papers are selected as highly cited ones. The complete list of these 288 papers can be found in Appendix. Note that the selection of these papers is done based on data retrieved from Scopus on March 21, 2018. The number of highly cited AI4Wind papers by year is shown in Fig. 3.2.
What kind of applications do these highly cited papers focus on? To answer this question, a text mining study is first carried out. For this purpose, a popular Python library for natural language processing, nltk (natural language toolkit) is used.

Based on the text of titles and abstracts of the 4172 AI4Wind papers, a word cloud which plots the 20 most frequent words is shown in Fig. 3.3.

Note that the size of a word is proportional to its frequency in the text, and common words that don’t carry domain specific meanings, so-called “stop words” (such as “the”, “is”, “and”) in natural language processing, have been filtered out. The word cloud figure is generated at: [https://www.jasondavies.com/wordcloud/](https://www.jasondavies.com/wordcloud/)

Similar word cloud figure based on the titles and abstracts of the 288 highly cited AI4Wind papers is shown in Fig. 3.4.
Examining Figs. 3.3 and 3.4, we can get some idea about the content of these papers. Besides some common words such as “wind”, “energy”, “model” and “method(s)”, some frequent words can be attributed with clear meaning that can define the possible applications these papers are dealing with. These words include: “forecasting”, “prediction”, “speed”, “power”, “data”, “neural”, “network”, “control”, etc.

Based on these frequent words, one could guess that many of these papers might use data driven AI/ML methods such as artificial neural network (ANN) and focus on applications such as:

- Wind speed/power prediction/forecasting
- Wind turbine/farm control

To better categorize the highly cited papers, a manual examination of their titles and abstracts is done to identify their application field. Seven fields of the main topics in these papers are identified as follows:

- **Control**: wind turbine or wind farm control
- **Forecasting**: wind speed and/or wind power forecasting
- **Maintenance**: operation & maintenance (O&M) of wind turbine/farm
- **Planning**: planning and design of wind power projects
- **System**: system planning, operation and control of system involving wind power
- **Others**: topics other than the above five
- **Review**: review paper on certain AI4Wind topics

According to this categorization, the number of highly cited AI4Wind papers by field is shown in Fig. 3.5. Apparently, forecasting is the most active area, which includes more than half of the 288 highly cited papers. This can also be backed up by the observations drawn on Figs. 3.3 and 3.4. The second group includes control, system and maintenance, which all have more than 20 highly cited papers.
Among the 288 papers, the paper with most citations per year is a review article from *Renewable Energy*. This paper was entitled “Current methods and advances in forecasting of wind power generation” and reviewed the field of wind power forecasting (Foley et al. [2012]). Since its publication in 2011, it has received 414 citations until March 21, 2018, i.e., 66.24 citations per year.

According to this paper, wind power forecasting models can be classified as two groups: one is NWP (numerical weather prediction) based and the other uses statistical and machine learning techniques. In the second group, various AI/ML techniques, such as various kinds of ANNs, SVM (support vector machine) and FIS (fuzzy inference system), have demonstrated the benefits of using AI in wind power forecasting (Foley et al. [2012]).

Excluding those review articles, the paper receives highest citations per year is “Optimal energy storage sizing and control for wind power applications” (Brekken et al. [2011]), which was published in 2011 in *IEEE Transactions on Sustainable Energy* and received 35.03 citations per year on average.

In this paper, the inclusion of large scale energy storage (a zinic/bromine flow battery-based system) to improve the predictability of wind power was investigated. It was demonstrated that effective control and coordination of energy storage system can make sure that the wind farm output lies in a tight range (4%) around the forecasted value in 90% of the time, which will help utilities to decrease their spinning reserve requirements and lower the cost of integrating more wind power. Among four control strategies considered, the advanced ANN controller is found to perform best. For this controller, a three layer ANN is trained with a genetic algorithm, with three inputs: forecasted and actual wind farm output power, energy storage state of charge, and one output: commended energy storage power. Note that the output determines the control strategy of the energy storage system.

Analyzing the authors’ information of the 288 highly cited papers, we can find the institutes that have published more than five highly cited papers as listed in Table 3.2.

![Figure 3.5: Highly cited AI4Wind papers by field](image)

**Table 3.2: Institutes with more than five highly cited papers**

<table>
<thead>
<tr>
<th>Papers</th>
<th>Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Lanzhou University, Lanzhou, China</td>
</tr>
<tr>
<td>15</td>
<td>University of Iowa, Iowa City, United States</td>
</tr>
<tr>
<td>12</td>
<td>Central South University China, Changsha, China</td>
</tr>
<tr>
<td>10</td>
<td>Huazhong University of Science and Technology, Wuhan, China</td>
</tr>
<tr>
<td>9</td>
<td>Danmarks Tekniske Universitet, Lyngby, Denmark</td>
</tr>
<tr>
<td>8</td>
<td>Dongbei University of Finance and EcoNomics, Dalian, China</td>
</tr>
<tr>
<td>8</td>
<td>Universitat Rostock, Rostock, Germany</td>
</tr>
<tr>
<td>7</td>
<td>Aristotle University of Thessaloniki, Thessaloniki, Greece</td>
</tr>
<tr>
<td>6</td>
<td>University of Malaya, Kuala Lumpur, Malaysia</td>
</tr>
</tbody>
</table>

The top 3 institutes in this table are from China and US. A further examination of each institute’s publications reveals that the papers from the two Chinese universities focus on the field of forecasting.
while papers from the US university focus on the field of maintenance.

The scholars that have published more than 5 highly cited papers are listed in Table 3.3.

Table 3.3: Scholars with more than 5 highly cited papers

<table>
<thead>
<tr>
<th>Papers</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Andrew Kusiak (University of Iowa, United States)</td>
</tr>
<tr>
<td>14</td>
<td>Jianzhou Wang (Dongbei University of Finance and EcoNomics, China)</td>
</tr>
<tr>
<td>12</td>
<td>Hui Liu (Central South University, China)</td>
</tr>
<tr>
<td>12</td>
<td>Yanfei Li (Central South University, China)</td>
</tr>
<tr>
<td>9</td>
<td>Hongqi Tian (Central South University, China)</td>
</tr>
<tr>
<td>6</td>
<td>Chihming Hong (National Kaohsiung Marine University, Taiwan)</td>
</tr>
<tr>
<td>6</td>
<td>Haiyang Zheng (University of Iowa, United States)</td>
</tr>
<tr>
<td>6</td>
<td>Zhe Song (Nanjing University, China)</td>
</tr>
</tbody>
</table>

Note that only the latest affiliated institute associated with each author is shown in parentheses. There seems to be some mismatch between these two tables, which can be explained by changing of affiliated institute for some scholars. For example, Jianzhou Wang was affiliated with Lanzhou University but later with Dongbei University of Finance and EcoNomics.

Based on the above literature analysis, we can conclude that:

- AI4Wind has been studied in various application fields
- Among different fields, forecasting is the most intensively and successfully researched
- Control, system and maintenance also show significant potentials for AI applications
- ANN is the most widely used AI/ML technique

3.2 Industrial stories

To better demonstrate the state of the art of AI4Wind, two industrial stories of successfully applying AI in wind energy field are described here.

The first story is in the field of forecasting. In 2014, smart wind and solar power was chosen by MIT Technology Review as one of the “10 Breakthrough Technologies”. The journal described the breakthrough with the case of Xcel Energy and National Center for Atmospheric Research (NCAR) in an article (Bullis [2014]), which said:

_Xcel’s original forecasts used data from just one or two weather stations per wind farm. Now NCAR collects information from nearly every wind turbine. The data feeds into a high-resolution weather model and is combined with the output from five additional wind forecasts. Using historical data, NCAR’s software learns which forecasts are best for each wind farm and assigns different weights to each accordingly. The resulting uber-forecast is more accurate than any of the original ones. Then, using data about how much power each turbine in the field will generate in response to different wind speeds, NCAR tells Xcel how much power to expect, in 15-minute increments, for up to seven days.

An illustration of 3 days ahead forecasting is shown in Fig. 3.6. In this figure, red lines represent 3 day ahead forecast of wind power, green line is the actual power output, and yellow zones represent the estimated uncertainty of forecasts.
As Fig. 3.6 shows, companies like Xcel Energy can forecast the power output of a given wind farm 3 days ahead with quite good accuracy. This kind of accuracy is only possible by combining large amounts of data (big data) with mature AI techniques such as ANN.

Accurate forecast of wind power output is also essential for increasing the penetration level of wind power in the electrical systems, as dealing with the intermittency of wind power naturally requires accurate and reliable forecast. As stated in the article in *MIT Technology Review* (Bullis [2014]):

> The forecasts are helping power companies deal with one of the biggest challenges of wind power: its intermittency. Using small amounts of wind power is no problem for utilities. They are accustomed to dealing with variability—after all, demand for electricity changes from season to season, even from minute to minute. However, a utility that wants to use a lot of wind power needs backup power to protect against a sudden loss of wind. These backup plants, which typically burn fossil fuels, are expensive and dirty. But with more accurate forecasts, utilities can cut the amount of power that needs to be held in reserve, minimizing their role.

Considering the dominance of research in forecasting in the literature, as analyzed in the previous sub-section, we can expect that AI will play an even larger role in wind power forecasting and bring successful stories to many other companies as to Xcel Energy.

The second story is from the field of maintenance.

Paul Dvorak wrote about an industrial story of applying AI in wind farm O&M in an article published on *Windpower Engineering and Development* in 2018 (Dvorak [2018]). This story is based on the case from Ensemble Energy, an advanced data analytics company dedicated to improving the way that energy is created.

In this article, the conventional O&M’s shortcomings are listed as follows:

- **Reactive**: maintenance actions are taken in response to faults or failures.
- **Static**: turbine behaviors have fixed upper and lower fault limits, which are not situation dependent, and are not customized to the known behavior of each turbine.
- **Labor intensive**: developing and running SCADA queries takes many hours of time which strain resources. Useful insights in the data are overlooked, resulting in lost opportunities to increase production or reduce costs.
On the hand, the AI based O&M will have the following advantages:

- **Predictive**: anomalies will be identified in early stages and addressed before faults or failures occur.
- **Dynamic**: turbines will have dynamic fault limits that will be situation dependent and can be customized for each turbine.
- **Automated**: a machine learning platform continually analyzes data in the background, and provides automated notifications to operators, along with suggestions for the most effective corrective actions. Skilled human operators will be freed from tedious data analyses, and their time will be spent on higher value activities.

Successful examples of using AI for wind farm O&M described in this article (Dvorak [2018]) include:

- **Detect premature failure of pitch bearings**: a model of expected pitch-bearing behavior under all operating conditions.
- **Detect lubrication anomaly**: a combination of expertise in wind-turbine loads, bearing operation and lubrication, and advanced data analysis.
- **Detect underperforming turbines**: unique ML based power ‘curve’ created for each individual turbine, including factors beside wind speed, such as: site elevation, seasonal factors, wind shear, turbulence intensity, and more.

Two figures demonstrating two of the AI based wind farm O&M cases are copied here in Fig. 3.7.

![Figure 3.7: AI based O&M applications in Ensemble Energy, source: Dvorak [2018]](image)

Besides the highly cited AI4Wind papers analyzed here and the industrial stories described above, there are of course many other studies and cases that are worthy of examination. Apparently, no state of the art review can be truly comprehensive and complete, as there are always limits in terms of time and resource, and also one’s knowledge of the field. Thus, the literature and cases included in this chapter are limited to gain a general understanding of the current state of the art in AI4Wind in the scope of this study.
Chapter 4

AI4Wind: the prospects and challenges

AI has demonstrated its potential for various wind energy applications, both in numerous published literature and in successful industrial cases. After reflecting on the big picture of AI and examining the state of the art of AI for wind energy, the future prospects and challenges for using AI in wind energy are identified in this chapter.

First of all, will AI bring transformational changes or only incremental improvements to the wind energy sector? To answer this question one need to first have a realistic assessment of the potential of AI in different wind energy application fields.

Based on the state of the art reviewed in Chapter 3 one can conclude that AI holds great potentials in providing smarter wind turbine/farm controller, better wind power forecasting, lower O&M cost, and maybe also superior wind turbine/farm design. However, all of these improvements, while crucial for further reducing the LCOE (levelized cost of energy) of wind energy, are not likely to revolutionize the whole wind energy sector.

Daniel Bennett from Entura (a leading power and water consulting company in Australia) came to a similar conclusion in an article entitled with “Can big data and artificial intelligence transform the wind sector?” (Bennett [2017]):

The improvements from applications of machine learning are fascinating for the technically inclined, and are already improving the performance of wind farms worldwide. However, we don’t consider them transformational when compared with the major changes the application of AI will have in other industries such as transportation (e.g. self-driving cars). Big data, machine learning and artificial intelligence offer current and future benefits for wind farm developers, manufacturers, owners and electricity market operators and traders, and it’s worth considering the applications, while understanding the limitations.

Although AI is not likely to bring transformational changes to the wind energy sector, it is definitely going to be one of the core enabling technologies for our future energy system. This system is going to be cleaner, smarter and cheaper, as:

- power from renewable sources takes a larger share of the world’s energy mix;
- technologies such as Internet of Things (IoTs) and 5G enable the online monitoring and controlling of nearly all equipment involved in energy generation, transmission and consumption;
- distributed power generations, electrical vehicles, and smart metering and appliances make the conventional consumers of energy to more active prosumers of energy;
- and the coming energy system thus becomes nearly impossible to operate, dispatch and control using the conventional techniques.
Nevertheless, assessing AI’s potential for the future energy system is beyond the scope of this report. Therefore, only the prospects and challenges identified for AI4Wind will be listed here.

**Prospects of AI4Wind:**

1. **forecasting:** combining different data sources, such as historical power data, power data from neighbouring wind farms and weather forecasting data, and using different AI/ML techniques, the accuracy of wind power can be further improved.
2. **Control:** AI can contribute to model state estimation, data driven model building, parameter tuning, and many other aspects of wind turbine and wind farm control.
3. **O&M:** better condition monitoring, fault detection, prognosis and diagnosis of component or turbine failure, remaining life time estimation and operation and maintenance strategy optimization, etc. with help of AI can largely reduce the O&M cost.
4. **Planning and siting:** AI could help with better wind resource assessment, wind farm site selection, faster project approval and siting of turbines.
5. **System operation and integration:** AI can play an essential role in integrating more wind power into the electrical grid, and also in the operation, dispatch and control of the electrical system with more power from intermittent power sources such as wind and solar.
6. **Design:** AI can complement the high-fidelity numerical model used in the design of wind turbine and turbine component, by providing fast surrogate models based on AI’s strength in A to B mapping, which will then enable the optimization of wind turbine design with more design variables and constraints in a shorter time. AI driven optimization methods will also play an important role for finding better designs of wind turbines and wind farms.

**Challenges of AI4Wind:**

1. **Lack of open data:** as shown in Fig. 2.10, data is the fuel of the AI rocket. In the wind energy sector, data is abundant and will become more so. But it is usually owned and possessed by different stakeholders such as the turbine manufacturers, wind farm developers, wind farm owners, and O&M service providers. The lack of data open to researchers and innovators is likely to slow down the development of AI solutions to wind energy applications. This challenge has also been addressed by Andrew Kusiak in an article published in *Nature* in 2016 (Kusiak [2016]).
2. **Lack of AI expertise:** the success of AI4Wind requires researchers and innovators who have expertise in both AI and wind energy, but the current practitioners in wind energy sectors typically lack sufficient AI expertise. This however can be largely solved by retraining and recruiting.
3. **Lack of explainability:** as explained in sub-section 2.5, the lack of explainability poses a serious challenge when trying to apply AI in some critical application fields. While not so serious as other field such as health, it will also bring certain challenges for the wind energy sector to welcome the use of AI in various application fields.
4. **Cybersecurity:** as AI plays a more central role in the operation, maintenance and control of wind farms and other energy infrastructures, cybersecurity will become an increasingly crucial challenge. This will require more research in the cybersecurity of energy system using AI, and also more robust design of wind farms and energy infrastructures that are more resilient against potential cyber attacks. In general, cybersecurity will be a more crucial challenge when AI is used more deeply and widely in the world.
Chapter 5

Conclusions

AI is coming. Thanks to cheap parallel computation, big data and better algorithms, the true potential of AI is likely to be unleashed across various sectors of business and society in our world (Kelly [2014]). In the near future, we will witness the further penetration of AI as a core enabling technology in different fields. The wind energy sector is not an exception to this trend.

As the review of the state of the art in AI4Wind (Artificial Intelligence for wind energy) has shown, AI has demonstrated its effectiveness and potential in various application fields of wind energy, including wind power forecasting, wind turbine and wind farm control, O&M, etc. Thousands of papers investigating all kinds of AI4Wind applications have been published, among which some have been very highly cited and produced large impact.

Many companies have also successfully used AI for different purposes in the wind energy industry, and more companies are coming to the playground. These companies will include not only traditional players in the wind energy sector, such as turbine manufacturers and wind farm developers, who aim to use AI to improve their wind turbines or wind farms, but also new players such as large tech companies and new start ups, who use AI as their core competence to solve the application problems in wind energy.

Although AI might not be able to revolutionize the wind energy sector (as discussed in Chapter 4), its ability to bring incremental improvements in various aspects of wind energy will be too important to miss for any serious players in this field. Any companies who want to stay competent in the wind energy sector will have to adopt AI in their research and development efforts.

For wind energy researchers in the academia, the opportunities brought by AI also can’t be overlooked. To fully unleash the potential of AI for wind energy, more research will be needed, for which new knowledge and skills need to be learned, conventional work flow and knowledge need to be reconsidered. The success of AI4Wind research can’t be realized without collaborative teams of talented researchers, who have in-depth domain knowledge of wind energy, applicable expertise in AI, and above all open and innovative mindsets.

Successful collaborations between companies across the value chain and between academia and industry will also be a prerequisite for the successful application of AI in wind energy. For example, one of the biggest challenges facing AI4Wind, lack of open data, can’t be solved by academia alone, and will require innovations in protecting, sharing and exchanging of valuable data.

While the potential of AI4Wind is tremendous, the related challenges are also unneglectable, thus the future of AI4Wind is far from certain. But as the quote, often credited to Abraham Lincoln, says: “The best way to predict the future is to create it.” It is up to us, the practitioners in wind energy, to determine how well the wind energy sector will harness the potential of AI, so let’s work for a brighter future for AI4Wind!
Bibliography


Appendix

In this Appendix, the detailed list of the focused papers on AI4Wind is presented. These papers are selected based on the citation statistics in Scopus as extracted on March 21, 2018. The search is done by a Python script using API provided by Scopus. The main criterions for selecting these papers are shown in Table A.1.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title(wind)</td>
<td>Title and Title-Abs-Key(intelligence or neural or ANN or AI learning or data mining or big data)</td>
</tr>
<tr>
<td>Total</td>
<td>4172 (there are false positive and false negative)</td>
</tr>
<tr>
<td>Highly cited</td>
<td>288 (≥ 5 citations per year since publication according to Scopus)</td>
</tr>
</tbody>
</table>

Note that the citations per year for a paper is calculated by dividing the total citations in Scopus until Mar 21, 2018 and divided by the number of years it has been published until the same date, with number of months accounted, i.e., one month is taken as 1/12 year.

The analysis of these paper has been done in Chapter 3.

In the following list, the 288 focused papers are ranked according to the citation number per year ('citation per y') for each paper. The listed information includes:

- #, ranking
- Title, title of the paper
- Year, publication year
- Source, journal or conference it published in
- Cited, total citations it received according to Scopus until March 21, 2018
- Cited per y, citations per year it received according to Scopus until March 21, 2018
- Field, field of the main topic in this paper (C: control; F: forecasting; M: maintenance; P: planning; S: system; O: Others; R: Review)

It is worthy to emphasize again that the focused papers are selected based on citation statistics as retrieved from Scopus on March 21, 2018. The same set of criterions if applied to more updated statistics will likely give different results.
<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Year</th>
<th>Source</th>
<th>Cited</th>
<th>Cited per y</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Current methods and advances in forecasting of wind power generation</td>
<td>2012</td>
<td>Renewable Energy</td>
<td>414</td>
<td>66.24</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>A review on the forecasting of wind speed and generated power</td>
<td>2009</td>
<td>Renewable and Sustainable Energy Reviews</td>
<td>462</td>
<td>49.95</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>Optimal energy storage sizing and control for wind power applications</td>
<td>2011</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>254</td>
<td>35.03</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model</td>
<td>2012</td>
<td>Renewable Energy</td>
<td>201</td>
<td>32.16</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>Probabilistic forecasting of wind power generation using extreme learning machine</td>
<td>2014</td>
<td>IEEE Transactions on Power Systems</td>
<td>133</td>
<td>31.29</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>Review of state of the art in smart rotor control research for wind turbines</td>
<td>2010</td>
<td>Progress in Aerospace Sciences</td>
<td>238</td>
<td>28.85</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>Short-term load and wind power forecasting using neural network-based prediction intervals</td>
<td>2014</td>
<td>IEEE Transactions on Neural Networks and Learning</td>
<td>120</td>
<td>28.24</td>
<td>F</td>
</tr>
<tr>
<td>10</td>
<td>Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting</td>
<td>2014</td>
<td>Knowledge-Based Systems</td>
<td>119</td>
<td>28.00</td>
<td>F</td>
</tr>
<tr>
<td>11</td>
<td>Support vector machines for wind speed prediction</td>
<td>2004</td>
<td>Renewable Energy</td>
<td>386</td>
<td>27.09</td>
<td>F</td>
</tr>
<tr>
<td>12</td>
<td>A review of wind power and wind speed forecasting methods with different time horizons</td>
<td>2010</td>
<td>North American Power Symposium 2010, NAPS 2010</td>
<td>223</td>
<td>27.03</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>The prediction and diagnosis of wind turbine faults</td>
<td>2011</td>
<td>Renewable Energy</td>
<td>184</td>
<td>25.38</td>
<td>M</td>
</tr>
<tr>
<td>15</td>
<td>Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method</td>
<td>2016</td>
<td>Renewable Energy</td>
<td>53</td>
<td>23.56</td>
<td>F</td>
</tr>
<tr>
<td>16</td>
<td>Long-term wind speed and power forecasting using local recurrent neural network models</td>
<td>2006</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>280</td>
<td>22.86</td>
<td>F</td>
</tr>
<tr>
<td>17</td>
<td>A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation</td>
<td>2004</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>312</td>
<td>21.89</td>
<td>F</td>
</tr>
<tr>
<td>18</td>
<td>AWNN-Assisted wind power forecasting using feed-forward neural network</td>
<td>2012</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>135</td>
<td>21.60</td>
<td>F</td>
</tr>
<tr>
<td>19</td>
<td>A stochastic model for the optimal operation of a wind-thermal power system</td>
<td>2009</td>
<td>IEEE Transactions on Power Systems</td>
<td>197</td>
<td>21.30</td>
<td>S</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>---------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>20</td>
<td>Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm</td>
<td>2015</td>
<td>Energy Conversion and Management</td>
<td>69</td>
<td>21.23</td>
<td>F</td>
</tr>
<tr>
<td>22</td>
<td>Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building</td>
<td>2016</td>
<td>Applied Energy</td>
<td>47</td>
<td>20.89</td>
<td>S</td>
</tr>
<tr>
<td>23</td>
<td>Short-term prediction of wind farm power: A data mining approach</td>
<td>2009</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>190</td>
<td>20.54</td>
<td>F</td>
</tr>
<tr>
<td>25</td>
<td>Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks</td>
<td>2013</td>
<td>Applied Energy</td>
<td>103</td>
<td>19.62</td>
<td>F</td>
</tr>
<tr>
<td>26</td>
<td>Condition based maintenance optimization for wind power generation systems under continuous monitoring</td>
<td>2011</td>
<td>Renewable Energy</td>
<td>137</td>
<td>18.90</td>
<td>M</td>
</tr>
<tr>
<td>27</td>
<td>Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach</td>
<td>2014</td>
<td>Applied Energy</td>
<td>80</td>
<td>18.82</td>
<td>F</td>
</tr>
<tr>
<td>28</td>
<td>Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by cross-validated optimization algorithm</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>42</td>
<td>18.67</td>
<td>F</td>
</tr>
<tr>
<td>29</td>
<td>Short-term wind power forecasting in Portugal by neural networks and wavelet transform</td>
<td>2011</td>
<td>Renewable Energy</td>
<td>134</td>
<td>18.48</td>
<td>F</td>
</tr>
<tr>
<td>30</td>
<td>Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks</td>
<td>2009</td>
<td>Renewable Energy</td>
<td>164</td>
<td>17.73</td>
<td>F</td>
</tr>
<tr>
<td>31</td>
<td>Wind power forecasts using gaussian processes and numerical weather prediction</td>
<td>2014</td>
<td>IEEE Transactions on Power Systems</td>
<td>75</td>
<td>17.65</td>
<td>F</td>
</tr>
<tr>
<td>32</td>
<td>Optimal prediction intervals of wind power generation</td>
<td>2014</td>
<td>IEEE Transactions on Power Systems</td>
<td>75</td>
<td>17.65</td>
<td>F</td>
</tr>
<tr>
<td>33</td>
<td>Wind power prediction based on artificial neural network</td>
<td>2008</td>
<td>Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering</td>
<td>174</td>
<td>16.95</td>
<td>F</td>
</tr>
<tr>
<td>34</td>
<td>A model-free approach to wind farm control using game theoretic methods</td>
<td>2013</td>
<td>IEEE Transactions on Control Systems Technology</td>
<td>88</td>
<td>16.75</td>
<td>C</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>---------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>35</td>
<td>Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal</td>
<td>2011</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>121</td>
<td>16.69</td>
<td>F</td>
</tr>
<tr>
<td>36</td>
<td>Neural MPPT control of wind generators with induction machines without speed sensors</td>
<td>2011</td>
<td>IEEE Transactions on Industrial Electronics</td>
<td>119</td>
<td>16.41</td>
<td>C</td>
</tr>
<tr>
<td>38</td>
<td>Power System stability control for a wind farm based on adaptive dynamic programming</td>
<td>2015</td>
<td>IEEE Transactions on Smart Grid</td>
<td>51</td>
<td>15.69</td>
<td>C</td>
</tr>
<tr>
<td>40</td>
<td>Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm</td>
<td>2012</td>
<td>Energy</td>
<td>98</td>
<td>15.68</td>
<td>S</td>
</tr>
<tr>
<td>41</td>
<td>Prediction intervals for short-term wind farm power generation forecasts</td>
<td>2013</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>81</td>
<td>15.43</td>
<td>F</td>
</tr>
<tr>
<td>42</td>
<td>Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method</td>
<td>2012</td>
<td>Energy</td>
<td>95</td>
<td>15.20</td>
<td>S</td>
</tr>
<tr>
<td>43</td>
<td>Transfer learning for short-term wind speed prediction with deep neural networks</td>
<td>2016</td>
<td>Renewable Energy</td>
<td>34</td>
<td>15.11</td>
<td>F</td>
</tr>
<tr>
<td>44</td>
<td>Application of artificial neural networks for the wind speed prediction of target station using reference stations data</td>
<td>2007</td>
<td>Renewable Energy</td>
<td>170</td>
<td>15.11</td>
<td>F</td>
</tr>
<tr>
<td>45</td>
<td>Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model</td>
<td>2010</td>
<td>Renewable Energy</td>
<td>124</td>
<td>15.03</td>
<td>F</td>
</tr>
<tr>
<td>46</td>
<td>Expert energy management of a micro-grid considering wind energy uncertainty</td>
<td>2014</td>
<td>Energy Conversion and Management</td>
<td>63</td>
<td>14.82</td>
<td>S</td>
</tr>
<tr>
<td>47</td>
<td>Forecasting the wind generation using a two-stage network based on meteorological information</td>
<td>2009</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>137</td>
<td>14.81</td>
<td>F</td>
</tr>
<tr>
<td>50</td>
<td>A new strategy for wind speed forecasting using artificial intelligent methods</td>
<td>2009</td>
<td>Renewable Energy</td>
<td>136</td>
<td>14.70</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>---------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>51</td>
<td>A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting</td>
<td>2017</td>
<td>Energy Conversion and Management</td>
<td>18</td>
<td>14.40</td>
<td>F</td>
</tr>
<tr>
<td>52</td>
<td>Improved gravitational search algorithm for unit commitment considering uncertainty of wind power</td>
<td>2014</td>
<td>Energy</td>
<td>61</td>
<td>14.35</td>
<td>S</td>
</tr>
<tr>
<td>53</td>
<td>Neural-network-based sensorless maximum wind energy capture with compensated power coefficient</td>
<td>2005</td>
<td>IEEE Transactions on Industry Applications</td>
<td>188</td>
<td>14.19</td>
<td>C</td>
</tr>
<tr>
<td>54</td>
<td>An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty</td>
<td>2007</td>
<td>IEEE Transactions on Industry Applications</td>
<td>159</td>
<td>14.13</td>
<td>S</td>
</tr>
<tr>
<td>55</td>
<td>A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks</td>
<td>2012</td>
<td>Renewable Energy</td>
<td>88</td>
<td>14.08</td>
<td>S</td>
</tr>
<tr>
<td>56</td>
<td>A case study on a hybrid wind speed forecasting method using BP neural network</td>
<td>2011</td>
<td>Knowledge-Based Systems</td>
<td>101</td>
<td>13.93</td>
<td>F</td>
</tr>
<tr>
<td>58</td>
<td>A comparison of various forecasting techniques applied to mean hourly wind speed time series</td>
<td>2000</td>
<td>Renewable Energy</td>
<td>253</td>
<td>13.86</td>
<td>F</td>
</tr>
<tr>
<td>59</td>
<td>Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA</td>
<td>2015</td>
<td>Renewable Energy</td>
<td>45</td>
<td>13.85</td>
<td>F</td>
</tr>
<tr>
<td>60</td>
<td>A new fuzzy-based combined prediction interval for wind power forecasting</td>
<td>2016</td>
<td>IEEE Transactions on Power Systems</td>
<td>31</td>
<td>13.78</td>
<td>F</td>
</tr>
<tr>
<td>61</td>
<td>Prediction, operations, and condition monitoring in wind energy</td>
<td>2013</td>
<td>Energy</td>
<td>72</td>
<td>13.71</td>
<td>R</td>
</tr>
<tr>
<td>62</td>
<td>Coordinated reactive power control of a large wind farm and a STATCOM using heuristic dynamic programming</td>
<td>2009</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>126</td>
<td>13.62</td>
<td>C</td>
</tr>
<tr>
<td>64</td>
<td>Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks</td>
<td>2009</td>
<td>Expert Systems with Applications</td>
<td>124</td>
<td>13.41</td>
<td>C</td>
</tr>
<tr>
<td>65</td>
<td>Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization</td>
<td>2011</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>97</td>
<td>13.38</td>
<td>F</td>
</tr>
<tr>
<td>66</td>
<td>Analysis of wind power generation and prediction using ANN: A case study</td>
<td>2008</td>
<td>Renewable Energy</td>
<td>137</td>
<td>13.37</td>
<td>F</td>
</tr>
<tr>
<td>67</td>
<td>Linear and non-linear autoregressive models for short-term wind speed forecasting</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>30</td>
<td>13.33</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>-----------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>69</td>
<td>Error analysis of short term wind power prediction models</td>
<td>2011</td>
<td>Applied Energy</td>
<td>96</td>
<td>13.24</td>
<td>F</td>
</tr>
<tr>
<td>70</td>
<td>Wind power forecasting using advanced neural networks models</td>
<td>1996</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>294</td>
<td>13.21</td>
<td>F</td>
</tr>
<tr>
<td>71</td>
<td>The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria</td>
<td>2010</td>
<td>Applied Energy</td>
<td>109</td>
<td>13.21</td>
<td>P</td>
</tr>
<tr>
<td>72</td>
<td>An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties</td>
<td>2013</td>
<td>Energy</td>
<td>69</td>
<td>13.14</td>
<td>S</td>
</tr>
<tr>
<td>74</td>
<td>Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions</td>
<td>2015</td>
<td>Energy Conversion and Management</td>
<td>42</td>
<td>12.92</td>
<td>F</td>
</tr>
<tr>
<td>75</td>
<td>Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions</td>
<td>2015</td>
<td>Energy Conversion and Management</td>
<td>42</td>
<td>12.92</td>
<td>F</td>
</tr>
<tr>
<td>76</td>
<td>Using neural networks to estimate wind turbine power generation</td>
<td>2001</td>
<td>Energy Conversion and Management</td>
<td>222</td>
<td>12.87</td>
<td>F</td>
</tr>
<tr>
<td>77</td>
<td>Short term wind speed prediction based on evolutionary support vector regression algorithms</td>
<td>2011</td>
<td>Expert Systems with Applications</td>
<td>93</td>
<td>12.83</td>
<td>F</td>
</tr>
<tr>
<td>79</td>
<td>GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey</td>
<td>2010</td>
<td>Renewable and Sustainable Energy Reviews</td>
<td>105</td>
<td>12.73</td>
<td>P</td>
</tr>
<tr>
<td>81</td>
<td>Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine</td>
<td>2014</td>
<td>Renewable Energy</td>
<td>53</td>
<td>12.47</td>
<td>M</td>
</tr>
<tr>
<td>82</td>
<td>Current status of wind energy forecasting and a hybrid method for hourly predictions</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>28</td>
<td>12.44</td>
<td>R</td>
</tr>
<tr>
<td>83</td>
<td>Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data</td>
<td>2016</td>
<td>Renewable Energy</td>
<td>28</td>
<td>12.44</td>
<td>F</td>
</tr>
<tr>
<td>84</td>
<td>Probabilistic constrained load flow considering integration of wind power generation and electric vehicles</td>
<td>2009</td>
<td>IEEE Transactions on Power Systems</td>
<td>115</td>
<td>12.43</td>
<td>S</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>--------------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>85</td>
<td>Multi-objective economic emission load dispatch solution using</td>
<td>2013</td>
<td>International Journal of Electrical Power and Energy</td>
<td>65</td>
<td>12.38</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>gravitational search algorithm and considering wind power penetration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method</td>
<td>2015</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>40</td>
<td>12.31</td>
<td>F</td>
</tr>
<tr>
<td>87</td>
<td>Short-term wind power prediction based on LSSVM-GSA model</td>
<td>2015</td>
<td>Energy Conversion and Management</td>
<td>40</td>
<td>12.31</td>
<td>F</td>
</tr>
<tr>
<td>88</td>
<td>Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system</td>
<td>2010</td>
<td>Energy</td>
<td>101</td>
<td>12.24</td>
<td>C</td>
</tr>
<tr>
<td>89</td>
<td>Wind speed and rotor position sensorless control for direct-drive PMG wind turbines</td>
<td>2012</td>
<td>IEEE Transactions on Industry Applications</td>
<td>76</td>
<td>12.16</td>
<td>C</td>
</tr>
<tr>
<td>90</td>
<td>Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms</td>
<td>2015</td>
<td>Energy Conversion and Management</td>
<td>39</td>
<td>12.00</td>
<td>F</td>
</tr>
<tr>
<td>91</td>
<td>Comparison of two new intelligent wind speed forecasting approaches based on Wavelet Packet Decomposition, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Artificial Neural Networks</td>
<td>2018</td>
<td>Energy Conversion and Management</td>
<td>3</td>
<td>12.00</td>
<td>F</td>
</tr>
<tr>
<td>92</td>
<td>Deep learning based ensemble approach for probabilistic wind power forecasting</td>
<td>2017</td>
<td>Applied Energy</td>
<td>15</td>
<td>12.00</td>
<td>F</td>
</tr>
<tr>
<td>93</td>
<td>Probabilistic wind power forecasting using radial basis function neural networks</td>
<td>2012</td>
<td>IEEE Transactions on Power Systems</td>
<td>75</td>
<td>12.00</td>
<td>F</td>
</tr>
<tr>
<td>94</td>
<td>Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization - Extreme learning machine approach</td>
<td>2014</td>
<td>Energy Conversion and Management</td>
<td>51</td>
<td>12.00</td>
<td>F</td>
</tr>
<tr>
<td>95</td>
<td>Reactive power control of grid-connected wind farm based on adaptive dynamic programming</td>
<td>2014</td>
<td>Neurocomputing</td>
<td>51</td>
<td>12.00</td>
<td>C</td>
</tr>
<tr>
<td>96</td>
<td>A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system</td>
<td>2017</td>
<td>Energy Conversion and Management</td>
<td>15</td>
<td>12.00</td>
<td>R</td>
</tr>
<tr>
<td>97</td>
<td>Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection</td>
<td>2011</td>
<td>Mechanical Systems and Signal Processing</td>
<td>86</td>
<td>11.86</td>
<td>M</td>
</tr>
<tr>
<td>99</td>
<td>New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks</td>
<td>2015</td>
<td>Renewable Energy</td>
<td>38</td>
<td>11.69</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>---------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>100</td>
<td>A novel application of an analog ensemble for short-term wind power</td>
<td>2015</td>
<td>Renewable Energy</td>
<td>38</td>
<td>11.69</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>forecasting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A comparative study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Evaluation of hybrid forecasting approaches for wind speed and power</td>
<td>2012</td>
<td>Renewable and Sustainable Energy Reviews</td>
<td>72</td>
<td>11.52</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>generation time series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Designing an adaptive fuzzy controller for maximum wind energy</td>
<td>2008</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>118</td>
<td>11.51</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>extraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>A robust combination approach for short-term wind speed forecasting</td>
<td>2015</td>
<td>Energy</td>
<td>37</td>
<td>11.38</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>and analysis - Combination of the ARIMA (Autoregressive Integrated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Regression) model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>A data-driven approach for monitoring blade pitch faults in wind</td>
<td>2011</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>82</td>
<td>11.31</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>turbines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>using radial-basis function neural network</td>
<td></td>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>A knowledge-based approach for control of two-level energy storage</td>
<td>2009</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>102</td>
<td>11.03</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>for wind energy systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Optimization of wind turbine energy and power factor with an</td>
<td>2010</td>
<td>Energy</td>
<td>90</td>
<td>10.91</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>evolutionary computation algorithm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>system (ANFIS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Multi-objective probabilistic distribution feeder reconfiguration</td>
<td>2014</td>
<td>International Journal of Electrical Power</td>
<td>46</td>
<td>10.82</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>considering wind power plants</td>
<td></td>
<td>and Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Hybridizing the fifth generation mesoscale model with artificial</td>
<td>2009</td>
<td>Renewable Energy</td>
<td>100</td>
<td>10.81</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>neural networks for short-term wind speed prediction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Data mining and wind power prediction: A literature review</td>
<td>2012</td>
<td>Renewable Energy</td>
<td>67</td>
<td>10.72</td>
<td>R</td>
</tr>
<tr>
<td>114</td>
<td>Wind speed and power forecasting based on spatial correlation models</td>
<td>1999</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>206</td>
<td>10.70</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------</td>
<td>-----------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>115</td>
<td>Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>24</td>
<td>10.67</td>
<td>F</td>
</tr>
<tr>
<td>116</td>
<td>Short-term wind speed forecasting based on a hybrid model</td>
<td>2013</td>
<td>Applied Soft Computing</td>
<td>56</td>
<td>10.67</td>
<td>F</td>
</tr>
<tr>
<td>117</td>
<td>Locally recurrent neural networks for wind speed prediction using spatial correlation</td>
<td>2007</td>
<td>Information Sciences</td>
<td>120</td>
<td>10.67</td>
<td>F</td>
</tr>
<tr>
<td>119</td>
<td>Forecasting wind with neural networks</td>
<td>2003</td>
<td>Marine Structures</td>
<td>160</td>
<td>10.49</td>
<td>F</td>
</tr>
<tr>
<td>120</td>
<td>Comparison of two new short-term wind-power forecasting systems</td>
<td>2009</td>
<td>Renewable Energy</td>
<td>97</td>
<td>10.49</td>
<td>F</td>
</tr>
<tr>
<td>121</td>
<td>Application of RBF neural networks and unscented transformation in probabilistic power-flow of microgrids including correlated wind/PV units and plug-in hybrid electric vehicles</td>
<td>2017</td>
<td>Simulation Modelling Practice and Theory</td>
<td>13</td>
<td>10.40</td>
<td>O</td>
</tr>
<tr>
<td>122</td>
<td>Wind speed forecasting in the South Coast of Oaxaca, México</td>
<td>2007</td>
<td>Renewable Energy</td>
<td>117</td>
<td>10.40</td>
<td>F</td>
</tr>
<tr>
<td>123</td>
<td>Modeling wind-turbine power curve: A data partitioning and mining approach</td>
<td>2017</td>
<td>Renewable Energy</td>
<td>13</td>
<td>10.40</td>
<td>O</td>
</tr>
<tr>
<td>124</td>
<td>On damage diagnosis for a wind turbine blade using pattern recognition</td>
<td>2014</td>
<td>Journal of Sound and Vibration</td>
<td>44</td>
<td>10.35</td>
<td>M</td>
</tr>
<tr>
<td>125</td>
<td>Advanced algorithms for wind turbine power curve modeling</td>
<td>2013</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>54</td>
<td>10.29</td>
<td>O</td>
</tr>
<tr>
<td>126</td>
<td>Models for monitoring wind farm power</td>
<td>2009</td>
<td>Renewable Energy</td>
<td>95</td>
<td>10.27</td>
<td>M</td>
</tr>
<tr>
<td>127</td>
<td>Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting</td>
<td>2009</td>
<td>IEEE Transactions on Power Systems</td>
<td>94</td>
<td>10.16</td>
<td>F</td>
</tr>
<tr>
<td>128</td>
<td>Size optimization for hybrid photovoltaic-wind energy system using ant colony optimization for continuous domains based integer programming</td>
<td>2015</td>
<td>Applied Soft Computing</td>
<td>33</td>
<td>10.15</td>
<td>S</td>
</tr>
<tr>
<td>129</td>
<td>A hybrid pso-anfis approach for short-term wind power prediction in Portugal</td>
<td>2011</td>
<td>Energy Conversion and Management</td>
<td>73</td>
<td>10.07</td>
<td>F</td>
</tr>
<tr>
<td>130</td>
<td>Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods</td>
<td>2011</td>
<td>Energy</td>
<td>72</td>
<td>9.93</td>
<td>F</td>
</tr>
<tr>
<td>131</td>
<td>Short-term wind power forecasting using ridgelet neural network</td>
<td>2011</td>
<td>Electric Power Systems</td>
<td>72</td>
<td>9.93</td>
<td>F</td>
</tr>
<tr>
<td>132</td>
<td>A novel wind power forecast model: Statistical hybrid wind power forecast technique (SHWIP)</td>
<td>2015</td>
<td>IEEE Transactions on Industrial Informatics</td>
<td>32</td>
<td>9.85</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>--------------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>134</td>
<td>A locally recurrent fuzzy neural network with application to the wind</td>
<td>2007</td>
<td>Neurocomputing</td>
<td>109</td>
<td>9.69</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>speed prediction using spatial correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Comparison between wind power prediction models based on wavelet</td>
<td>2014</td>
<td>Energies</td>
<td>41</td>
<td>9.65</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>decomposition with Least-Squares Support Vector Machine (LS-SVM) and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artificial Neural Network (ANN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Three-phase AC/DC power-flow for balanced/unbalanced microgrids</td>
<td>2017</td>
<td>IET Power Electronics</td>
<td>12</td>
<td>9.60</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>including wind/solar, droop-controlled and electronically-coupled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>distributed energy resources using radial basis function neural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>A data-driven multi-model methodology with deep feature selection for</td>
<td>2017</td>
<td>Applied Energy</td>
<td>12</td>
<td>9.60</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>short-term wind forecasting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wind generation system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>A compound structure of ELM based on feature selection and parameter</td>
<td>2017</td>
<td>Energy Conversion and Management</td>
<td>12</td>
<td>9.60</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>optimization using hybrid backtracking search algorithm for wind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>speed forecasting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>A Coral Reefs Optimization algorithm with Harmony Search operators for</td>
<td>2015</td>
<td>Renewable Energy</td>
<td>31</td>
<td>9.54</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>accurate wind speed prediction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Optimized control of DFIG-based wind generation using sensitivity</td>
<td>2013</td>
<td>IEEE Transactions on Smart Grid</td>
<td>50</td>
<td>9.52</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>analysis and particle swarm optimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Renewable Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Short-term wind speed forecasting using empirical mode decomposition</td>
<td>2016</td>
<td>Climate Dynamics</td>
<td>21</td>
<td>9.33</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>and feature selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Application of extreme learning machine for estimation of wind speed</td>
<td>2016</td>
<td>Climate Dynamics</td>
<td>21</td>
<td>9.33</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Predicting the wind power density based upon extreme learning machine</td>
<td>2015</td>
<td>Energy</td>
<td>30</td>
<td>9.23</td>
<td>P</td>
</tr>
<tr>
<td>146</td>
<td>Optimal coordinate operation control for wind-photovoltaic-battery</td>
<td>2015</td>
<td>Energy Conversion and Management</td>
<td>30</td>
<td>9.23</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>storage power-generation units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Fuzzy modeling and optimization algorithm on dynamic economic dispatch</td>
<td>2006</td>
<td>Dianli Xitong</td>
<td>113</td>
<td>9.22</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>in wind power integrated system</td>
<td></td>
<td>Dianli Xitong/Automation of Electric Power Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Renewable and Sustainable Energy Reviews</td>
<td>48</td>
<td>9.14</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>---------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>150</td>
<td>Multiple architecture system for wind speed prediction</td>
<td>2011</td>
<td>Applied Energy</td>
<td>66</td>
<td>9.10</td>
<td>F</td>
</tr>
<tr>
<td>151</td>
<td>Short-term wind speed forecasting with Markov-switching model</td>
<td>2014</td>
<td>Applied Energy</td>
<td>38</td>
<td>8.94</td>
<td>F</td>
</tr>
<tr>
<td>152</td>
<td>An SVM-based solution for fault detection in wind turbines</td>
<td>2015</td>
<td>Sensors (Switzerland)</td>
<td>29</td>
<td>8.92</td>
<td>M</td>
</tr>
<tr>
<td>153</td>
<td>Wind speed prediction using reduced support vector machines with feature selection</td>
<td>2015</td>
<td>Neurocomputing</td>
<td>29</td>
<td>8.92</td>
<td>F</td>
</tr>
<tr>
<td>154</td>
<td>Wind speed prediction in the mountainous region of India using an artificial neural network model</td>
<td>2015</td>
<td>Renewable Energy</td>
<td>29</td>
<td>8.92</td>
<td>F</td>
</tr>
<tr>
<td>155</td>
<td>A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction</td>
<td>2016</td>
<td>Renewable Energy</td>
<td>20</td>
<td>8.89</td>
<td>C</td>
</tr>
<tr>
<td>156</td>
<td>Short-term wind speed and power forecasting using an ensemble of mixture density neural networks</td>
<td>2016</td>
<td>Renewable Energy</td>
<td>20</td>
<td>8.89</td>
<td>F</td>
</tr>
<tr>
<td>157</td>
<td>Deep belief network based deterministic and probabilistic wind speed forecasting approach</td>
<td>2016</td>
<td>Applied Energy</td>
<td>20</td>
<td>8.89</td>
<td>F</td>
</tr>
<tr>
<td>158</td>
<td>Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks</td>
<td>2017</td>
<td>Energy Conversion and Management Research</td>
<td>11</td>
<td>8.80</td>
<td>F</td>
</tr>
<tr>
<td>159</td>
<td>Monitoring of wind farms' power curves using machine learning</td>
<td>2012</td>
<td>Applied Energy</td>
<td>55</td>
<td>8.80</td>
<td>M</td>
</tr>
<tr>
<td>160</td>
<td>A fuzzy controller for maximum energy extraction from variable speed wind power generation systems</td>
<td>2008</td>
<td>Electric Power Systems Research</td>
<td>90</td>
<td>8.78</td>
<td>C</td>
</tr>
<tr>
<td>161</td>
<td>Wind farm power prediction: a data-mining approach</td>
<td>2009</td>
<td>Wind Energy</td>
<td>81</td>
<td>8.76</td>
<td>F</td>
</tr>
<tr>
<td>162</td>
<td>A new strategy for predicting short-term wind speed using soft computing models</td>
<td>2012</td>
<td>Renewable and Sustainable Energy Reviews</td>
<td>54</td>
<td>8.64</td>
<td>F</td>
</tr>
<tr>
<td>166</td>
<td>Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>19</td>
<td>8.44</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------------------------------------------</td>
<td>------</td>
<td>-----------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>167</td>
<td>Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>19</td>
<td>8.44</td>
<td>O</td>
</tr>
<tr>
<td>168</td>
<td>Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbines</td>
<td>2016</td>
<td>Neurocomputing</td>
<td>19</td>
<td>8.44</td>
<td>C</td>
</tr>
<tr>
<td>169</td>
<td>A hybrid strategy of short term wind power prediction</td>
<td>2013</td>
<td>Renewable Energy</td>
<td>44</td>
<td>8.38</td>
<td>F</td>
</tr>
<tr>
<td>170</td>
<td>Combined nonparametric prediction intervals for wind power generation</td>
<td>2013</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>44</td>
<td>8.38</td>
<td>F</td>
</tr>
<tr>
<td>171</td>
<td>Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs</td>
<td>2010</td>
<td>Energy</td>
<td>69</td>
<td>8.36</td>
<td>F</td>
</tr>
<tr>
<td>172</td>
<td>Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models</td>
<td>2008</td>
<td>International Journal of Forecasting</td>
<td>84</td>
<td>8.20</td>
<td>F</td>
</tr>
<tr>
<td>173</td>
<td>Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors</td>
<td>2013</td>
<td>Energy Conversion and Management</td>
<td>43</td>
<td>8.19</td>
<td>C</td>
</tr>
<tr>
<td>174</td>
<td>Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller</td>
<td>2012</td>
<td>Electric Power Systems Research</td>
<td>51</td>
<td>8.16</td>
<td>C</td>
</tr>
<tr>
<td>175</td>
<td>Recursive wind speed forecasting based on Hammerstein Auto-Regressive model</td>
<td>2015</td>
<td>Applied Energy</td>
<td>26</td>
<td>8.00</td>
<td>F</td>
</tr>
<tr>
<td>176</td>
<td>Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China</td>
<td>2015</td>
<td>Renewable Energy</td>
<td>26</td>
<td>8.00</td>
<td>F</td>
</tr>
<tr>
<td>177</td>
<td>Fault analysis and condition monitoring of the wind turbine gearbox</td>
<td>2012</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>50</td>
<td>8.00</td>
<td>M</td>
</tr>
<tr>
<td>178</td>
<td>Sparse online warped Gaussian process for wind power probabilistic forecasting</td>
<td>2013</td>
<td>Applied Energy</td>
<td>42</td>
<td>8.00</td>
<td>F</td>
</tr>
<tr>
<td>179</td>
<td>Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network</td>
<td>2018</td>
<td>Energy Conversion and Management</td>
<td>2</td>
<td>8.00</td>
<td>F</td>
</tr>
<tr>
<td>180</td>
<td>Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm</td>
<td>2018</td>
<td>Energy Conversion and Management</td>
<td>2</td>
<td>8.00</td>
<td>F</td>
</tr>
<tr>
<td>181</td>
<td>Using artificial neural networks for temporal and spatial wind speed forecasting in Iran</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>18</td>
<td>8.00</td>
<td>F</td>
</tr>
<tr>
<td>182</td>
<td>A neural networks approach for wind speed prediction</td>
<td>1998</td>
<td>Renewable Energy</td>
<td>159</td>
<td>7.85</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>-------------------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>183</td>
<td>Short-term wind power ensemble prediction based on gaussian processes and Neural networks</td>
<td>2014</td>
<td>IEEE Transactions on Smart Grid</td>
<td>33</td>
<td>7.76</td>
<td>F</td>
</tr>
<tr>
<td>184</td>
<td>Wind power forecasting based on principle component phase space reconstruction</td>
<td>2015</td>
<td>Renewable Energy</td>
<td>25</td>
<td>7.69</td>
<td>F</td>
</tr>
<tr>
<td>185</td>
<td>Sensorless control for a switched reluctance wind generator, based on current slopes and neural networks</td>
<td>2009</td>
<td>IEEE Transactions on Industrial Electronics</td>
<td>71</td>
<td>7.68</td>
<td>C</td>
</tr>
<tr>
<td>186</td>
<td>Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks</td>
<td>2009</td>
<td>Renewable Energy</td>
<td>71</td>
<td>7.68</td>
<td>F</td>
</tr>
<tr>
<td>187</td>
<td>Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting</td>
<td>2013</td>
<td>Journal of Wind Engineering and Industrial Aerodynamics</td>
<td>40</td>
<td>7.62</td>
<td>F</td>
</tr>
<tr>
<td>188</td>
<td>A generalized model for wind turbine anomaly identification based on SCADA data</td>
<td>2016</td>
<td>Applied Energy</td>
<td>17</td>
<td>7.56</td>
<td>M</td>
</tr>
<tr>
<td>189</td>
<td>Intelligent control of a class of wind energy conversion systems</td>
<td>1999</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>145</td>
<td>7.53</td>
<td>C</td>
</tr>
<tr>
<td>190</td>
<td>Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES</td>
<td>2014</td>
<td>Energy Conversion and Management</td>
<td>32</td>
<td>7.53</td>
<td>O</td>
</tr>
<tr>
<td>192</td>
<td>A data-mining approach to monitoring wind turbines</td>
<td>2012</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>47</td>
<td>7.52</td>
<td>M</td>
</tr>
<tr>
<td>193</td>
<td>Application of a control algorithm for wind speed prediction and active power generation</td>
<td>2005</td>
<td>Renewable Energy</td>
<td>99</td>
<td>7.47</td>
<td>F</td>
</tr>
<tr>
<td>194</td>
<td>A novel approach for the forecasting of mean hourly wind speed time series</td>
<td>2002</td>
<td>Renewable Energy</td>
<td>121</td>
<td>7.45</td>
<td>F</td>
</tr>
<tr>
<td>195</td>
<td>Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources</td>
<td>2015</td>
<td>Renewable and Sustainable Energy Reviews</td>
<td>24</td>
<td>7.38</td>
<td>P</td>
</tr>
<tr>
<td>197</td>
<td>Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system</td>
<td>2013</td>
<td>Neurocomputing</td>
<td>38</td>
<td>7.24</td>
<td>C</td>
</tr>
<tr>
<td>198</td>
<td>Agent-based modeling for trading wind power with uncertainty in the day-ahead wholesale electricity markets of single-sided auctions</td>
<td>2012</td>
<td>Applied Energy</td>
<td>45</td>
<td>7.20</td>
<td>S</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>---------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>199</td>
<td>Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting</td>
<td>2017</td>
<td>Energy</td>
<td>9</td>
<td>7.20</td>
<td>F</td>
</tr>
<tr>
<td>200</td>
<td>Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm</td>
<td>2017</td>
<td>Energy Conversion and Management</td>
<td>9</td>
<td>7.20</td>
<td>F</td>
</tr>
<tr>
<td>201</td>
<td>Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review</td>
<td>2017</td>
<td>Renewable and Sustainable</td>
<td>9</td>
<td>7.20</td>
<td>R</td>
</tr>
<tr>
<td>202</td>
<td>A novel forecasting model based on a hybrid processing strategy and an adaptive neuro-fuzzy inference system</td>
<td>2017</td>
<td>Renewable Energy</td>
<td>9</td>
<td>7.20</td>
<td>F</td>
</tr>
<tr>
<td>203</td>
<td>Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: A review</td>
<td>2010</td>
<td>Expert Systems with Applications</td>
<td>52</td>
<td>7.17</td>
<td>C</td>
</tr>
<tr>
<td>204</td>
<td>Output power control for variable-speed variable-pitch wind generation systems</td>
<td>2010</td>
<td>IET Renewable Power</td>
<td>16</td>
<td>7.11</td>
<td>R</td>
</tr>
<tr>
<td>205</td>
<td>Wind speed estimation using multilayer perceptron</td>
<td>2007</td>
<td>Energy Conversion and Management</td>
<td>30</td>
<td>7.06</td>
<td>F</td>
</tr>
<tr>
<td>206</td>
<td>Wind speed estimation using multilayer perceptron</td>
<td>2007</td>
<td>Energy Conversion and Management</td>
<td>30</td>
<td>7.06</td>
<td>F</td>
</tr>
<tr>
<td>207</td>
<td>Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine</td>
<td>2008</td>
<td>Energy Conversion and Management</td>
<td>37</td>
<td>7.05</td>
<td>F</td>
</tr>
<tr>
<td>208</td>
<td>Wind power forecasting and its uncertainty analysis using optimized relevance vector machine</td>
<td>2008</td>
<td>Energy Conversion and Management</td>
<td>37</td>
<td>7.05</td>
<td>F</td>
</tr>
<tr>
<td>210</td>
<td>Universal tracking control of wind conversion system for purpose of maximum power acquisition under hierarchical control structure</td>
<td>2009</td>
<td>Energy Conversion and Management</td>
<td>64</td>
<td>6.92</td>
<td>F</td>
</tr>
<tr>
<td>211</td>
<td>Short-term wind power output forecasting model for economic dispatch of power system incorporating large-scale wind farm</td>
<td>2009</td>
<td>Energy Conversion and Management</td>
<td>64</td>
<td>6.92</td>
<td>F</td>
</tr>
<tr>
<td>212</td>
<td>Prediction of wind farm power ramp rates: A data-mining approach</td>
<td>2011</td>
<td>Energy Conversion and Management</td>
<td>29</td>
<td>6.82</td>
<td>S</td>
</tr>
</tbody>
</table>

48
<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Year</th>
<th>Source</th>
<th>Cited</th>
<th>Cited per y</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm</td>
<td>2014</td>
<td>Energy Conversion and Management</td>
<td>29</td>
<td>6.82</td>
<td>F</td>
</tr>
<tr>
<td>215</td>
<td>Neural network based hybrid computing model for wind speed prediction</td>
<td>2013</td>
<td>Neurocomputing</td>
<td>35</td>
<td>6.67</td>
<td>F</td>
</tr>
<tr>
<td>216</td>
<td>Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting</td>
<td>2016</td>
<td>Solar Energy</td>
<td>15</td>
<td>6.67</td>
<td>F</td>
</tr>
<tr>
<td>217</td>
<td>Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework</td>
<td>2016</td>
<td>Neurocomputing</td>
<td>15</td>
<td>6.67</td>
<td>F</td>
</tr>
<tr>
<td>218</td>
<td>Using data-driven approach for wind power prediction: A comparative study</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>15</td>
<td>6.67</td>
<td>F</td>
</tr>
<tr>
<td>219</td>
<td>Machine learning ensembles for wind power prediction</td>
<td>2016</td>
<td>Renewable Energy</td>
<td>15</td>
<td>6.67</td>
<td>F</td>
</tr>
<tr>
<td>220</td>
<td>A novel bidirectional mechanism based on time series model for wind power forecasting</td>
<td>2016</td>
<td>Applied Energy</td>
<td>15</td>
<td>6.67</td>
<td>F</td>
</tr>
<tr>
<td>221</td>
<td>A comparative study between three sensorless control strategies for PMSG in wind energy conversion system</td>
<td>2009</td>
<td>Applied Energy</td>
<td>60</td>
<td>6.49</td>
<td>C</td>
</tr>
<tr>
<td>222</td>
<td>Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks</td>
<td>2009</td>
<td>Neurocomputing</td>
<td>60</td>
<td>6.49</td>
<td>F</td>
</tr>
<tr>
<td>223</td>
<td>Hybrid intelligent approach for short-term wind power forecasting in Portugal</td>
<td>2011</td>
<td>IET Renewable Power Generation</td>
<td>47</td>
<td>6.48</td>
<td>F</td>
</tr>
<tr>
<td>224</td>
<td>Direct interval forecasting of wind power</td>
<td>2013</td>
<td>IEEE Transactions on Power</td>
<td>34</td>
<td>6.48</td>
<td>F</td>
</tr>
<tr>
<td>228</td>
<td>A novel hybrid approach for wind speed prediction</td>
<td>2014</td>
<td>Information Sciences</td>
<td>27</td>
<td>6.35</td>
<td>F</td>
</tr>
<tr>
<td>229</td>
<td>Optimal operation strategy of energy storage unit in wind power integration based on stochastic programming</td>
<td>2011</td>
<td>IET Renewable Power Generation</td>
<td>46</td>
<td>6.34</td>
<td>S</td>
</tr>
<tr>
<td>231</td>
<td>Kernel ridge regression with active learning for wind speed prediction</td>
<td>2013</td>
<td>Applied Energy</td>
<td>33</td>
<td>6.29</td>
<td>F</td>
</tr>
<tr>
<td>232</td>
<td>A hybrid wind power forecasting model based on data mining and wavelets analysis</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>14</td>
<td>6.22</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>---------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>233</td>
<td>A Gaussian process regression based hybrid approach for short-term wind speed prediction</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>14</td>
<td>6.22</td>
<td>F</td>
</tr>
<tr>
<td>234</td>
<td>Short-term wind power combined forecasting based on error forecast correction</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>14</td>
<td>6.22</td>
<td>F</td>
</tr>
<tr>
<td>235</td>
<td>Hybrid model for hourly forecast of photovoltaic and wind power</td>
<td>2016</td>
<td>Energy Conversion and Management</td>
<td>14</td>
<td>6.22</td>
<td>F</td>
</tr>
<tr>
<td>237</td>
<td>Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China</td>
<td>2012</td>
<td>ISA transactions</td>
<td>38</td>
<td>6.08</td>
<td>C</td>
</tr>
<tr>
<td>240</td>
<td>Locally recurrent neural networks for long-term wind speed and power prediction</td>
<td>2006</td>
<td>Renewable Energy</td>
<td>38</td>
<td>6.08</td>
<td>F</td>
</tr>
<tr>
<td>241</td>
<td>Wind tunnel testing of a smart rotor model with trailing-edge flaps</td>
<td>2002</td>
<td>Journal of the American Helicopter Society</td>
<td>98</td>
<td>6.03</td>
<td>C</td>
</tr>
<tr>
<td>242</td>
<td>Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN</td>
<td>2011</td>
<td>Energy Conversion and Management</td>
<td>43</td>
<td>5.93</td>
<td>C</td>
</tr>
<tr>
<td>244</td>
<td>Interval forecasts of a novelty hybrid model for wind speeds</td>
<td>2015</td>
<td>Energy Reports</td>
<td>19</td>
<td>5.85</td>
<td>F</td>
</tr>
<tr>
<td>246</td>
<td>A Pareto optimal multi-objective optimization for a horizontal axis wind turbine blade airfoil sections utilizing exergy analysis and neural networks</td>
<td>2015</td>
<td>Journal of Wind Engineering and Industrial Aerodynamics</td>
<td>19</td>
<td>5.85</td>
<td>O</td>
</tr>
<tr>
<td>247</td>
<td>Application of multi-class fuzzy support vector machine classifier for fault diagnosis of wind turbine</td>
<td>2016</td>
<td>Fuzzy Sets and Systems</td>
<td>13</td>
<td>5.78</td>
<td>M</td>
</tr>
<tr>
<td>248</td>
<td>Wind turbine power curve modelling using artificial neural network</td>
<td>2016</td>
<td>Renewable Energy</td>
<td>13</td>
<td>5.78</td>
<td>O</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>--------------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>249</td>
<td>Hybrid dynamic classifier for drift-like fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine converters</td>
<td>2016</td>
<td>Neurocomputing</td>
<td>13</td>
<td>5.78</td>
<td>M</td>
</tr>
<tr>
<td>251</td>
<td>Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM</td>
<td>2013</td>
<td>Renewable Energy</td>
<td>30</td>
<td>5.71</td>
<td>M</td>
</tr>
<tr>
<td>252</td>
<td>Developing a discrete harmony search algorithm for size optimization of wind-photovoltaic hybrid energy system</td>
<td>2013</td>
<td>Solar Energy</td>
<td>30</td>
<td>5.71</td>
<td>S</td>
</tr>
<tr>
<td>253</td>
<td>Power optimization of wind turbines with data mining and evolutionary computation</td>
<td>2010</td>
<td>Renewable Energy</td>
<td>47</td>
<td>5.70</td>
<td>C</td>
</tr>
<tr>
<td>254</td>
<td>Dynamic control of wind turbines</td>
<td>2010</td>
<td>Renewable Energy</td>
<td>47</td>
<td>5.70</td>
<td>C</td>
</tr>
<tr>
<td>255</td>
<td>Fuzzy neural network output maximization control for sensorless wind energy conversion system</td>
<td>2010</td>
<td>Energy</td>
<td>47</td>
<td>5.70</td>
<td>C</td>
</tr>
<tr>
<td>256</td>
<td>An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines</td>
<td>2010</td>
<td>Expert Systems with Applications</td>
<td>47</td>
<td>5.70</td>
<td>O</td>
</tr>
<tr>
<td>257</td>
<td>A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system</td>
<td>2017</td>
<td>Renewable Energy</td>
<td>7</td>
<td>5.60</td>
<td>F</td>
</tr>
<tr>
<td>258</td>
<td>A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching</td>
<td>2017</td>
<td>Energy</td>
<td>7</td>
<td>5.60</td>
<td>S</td>
</tr>
<tr>
<td>259</td>
<td>An improved neural network-based approach for short-term wind speed and power forecast</td>
<td>2017</td>
<td>Renewable Energy</td>
<td>7</td>
<td>5.60</td>
<td>F</td>
</tr>
<tr>
<td>260</td>
<td>Artificial neural network approach to spatial estimation of wind velocity data</td>
<td>2006</td>
<td>Energy Conversion and Management</td>
<td>68</td>
<td>5.55</td>
<td>P</td>
</tr>
<tr>
<td>261</td>
<td>Wind Power Forecasting Using Neural Network Ensembles with Feature Selection</td>
<td>2015</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>18</td>
<td>5.54</td>
<td>F</td>
</tr>
<tr>
<td>262</td>
<td>Predictive Deep Boltzmann Machine for Multi-period Wind Speed Forecasting</td>
<td>2015</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>18</td>
<td>5.54</td>
<td>F</td>
</tr>
<tr>
<td>263</td>
<td>Ultra-short-term wind power forecasting based on SVM optimized by GA</td>
<td>2015</td>
<td>Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control</td>
<td>18</td>
<td>5.54</td>
<td>F</td>
</tr>
<tr>
<td>264</td>
<td>Multistage Wind-Electric Power Forecast by Using a Combination of Advanced Statistical Methods</td>
<td>2015</td>
<td>IEEE Transactions on Industrial Informatics</td>
<td>18</td>
<td>5.54</td>
<td>F</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>------------------------------------------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>265</td>
<td>Generalized adaptive neuro-fuzzy based method for wind speed</td>
<td>2015</td>
<td>Flow Measurement and Instrumentation</td>
<td>18</td>
<td>5.54</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>distribution prediction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>Weighted error functions in artificial neural networks for improved</td>
<td>2013</td>
<td>Applied Energy</td>
<td>29</td>
<td>5.52</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>wind energy potential estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>Short-term power prediction of a wind farm based on wavelet analysis</td>
<td>2009</td>
<td>Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering</td>
<td>51</td>
<td>5.51</td>
<td>P</td>
</tr>
<tr>
<td>268</td>
<td>Fault diagnosis of three-parallel voltage-source converter for a high-power wind turbine</td>
<td>2012</td>
<td>IET Power Electronics</td>
<td>34</td>
<td>5.44</td>
<td>M</td>
</tr>
<tr>
<td>269</td>
<td>Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network</td>
<td>2014</td>
<td>Energy</td>
<td>23</td>
<td>5.41</td>
<td>C</td>
</tr>
<tr>
<td>270</td>
<td>Complex-valued forecasting of wind profile</td>
<td>2006</td>
<td>Renewable Energy</td>
<td>66</td>
<td>5.39</td>
<td>F</td>
</tr>
<tr>
<td>272</td>
<td>Short-term wind speed or power forecasting with heteroscedastic support vector regression</td>
<td>2016</td>
<td>IEEE Transactions on Sustainable Energy Neurocomputing</td>
<td>12</td>
<td>5.33</td>
<td>F</td>
</tr>
<tr>
<td>273</td>
<td>A new intelligent method based on combination of VMD and ELM for short term wind power forecasting</td>
<td>2016</td>
<td>IEEE Internet of Things Journal</td>
<td>12</td>
<td>5.33</td>
<td>R</td>
</tr>
<tr>
<td>274</td>
<td>A Survey of Cyber-Physical Advances and Challenges of Wind Energy</td>
<td>2016</td>
<td>Energies</td>
<td>12</td>
<td>5.33</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Conversion Systems: Prospects for Internet of Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>Wind speed prediction using a univariate ARIMA model and a multivariate NARX model</td>
<td>2016</td>
<td>Internation Journal of Electrical Power and Energy</td>
<td>28</td>
<td>5.33</td>
<td>S</td>
</tr>
<tr>
<td>276</td>
<td>Energy and spinning reserve scheduling for a wind-thermal power system using CMA-ES with mean learning technique</td>
<td>2003</td>
<td>IEEE Bologna PowerTech - Conference Proceedings</td>
<td>81</td>
<td>5.31</td>
<td>F</td>
</tr>
<tr>
<td>277</td>
<td>Wind power forecasting using fuzzy neural networks enhanced with on-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>line prediction risk assessment</td>
<td>2009</td>
<td>Dianli Xitong</td>
<td>49</td>
<td>5.30</td>
<td>F</td>
</tr>
<tr>
<td>278</td>
<td>Wind speed and wind turbine output forecast based on combination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Year</td>
<td>Source</td>
<td>Cited</td>
<td>Cited per y</td>
<td>Field</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td>---------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>279</td>
<td>Reduction of frequency fluctuation for wind farm connected power</td>
<td>2012</td>
<td>IET Renewable Power Generation</td>
<td>33</td>
<td>5.28</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>systems by an adaptive artificial neural network controlled energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>capacitor system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>An intelligent dynamic security assessment framework for power systems</td>
<td>2012</td>
<td>IEEE Transactions on Industrial</td>
<td>33</td>
<td>5.28</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>with wind power</td>
<td></td>
<td>Informatics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>Wind speed spatial estimation for energy planning in Sicily: A neural</td>
<td>2008</td>
<td>Renewable Energy</td>
<td>54</td>
<td>5.27</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>kriging application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>Wind power ramp events classification and forecasting: A data mining</td>
<td>2011</td>
<td>IEEE Power and Energy Society</td>
<td>38</td>
<td>5.24</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>approach</td>
<td></td>
<td>General Meeting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>The &quot;Weather intelligence for renewable energies&quot; benchmarking</td>
<td>2015</td>
<td>Energies</td>
<td>17</td>
<td>5.23</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>exercise on short-term forecasting of wind and solar power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>How Wind Turbines Alignment to Wind Direction Affects Efficiency? A</td>
<td>2015</td>
<td>Energy Procedia</td>
<td>17</td>
<td>5.23</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Case Study through SCADA Data Mining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>A novel approach to capture the maximum power from variable speed</td>
<td>2015</td>
<td>Renewable and Sustainable Energy</td>
<td>17</td>
<td>5.23</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>wind turbines using PI controller, RBF neural network and GSA</td>
<td></td>
<td>Reviews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>evolutionary algorithm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>Nonlinear model identification of wind turbine with a neural network</td>
<td>2004</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>74</td>
<td>5.19</td>
<td>O</td>
</tr>
<tr>
<td>287</td>
<td>Intelligent optimized wind resource assessment and wind turbines</td>
<td>2013</td>
<td>Applied Energy</td>
<td>27</td>
<td>5.14</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>selection in Huitengxile of Inner Mongolia, China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DTU Wind Energy is a department of the Technical University of Denmark with a unique integration of research, education, innovation and public/private sector consulting in the field of wind energy. Our activities develop new opportunities and technology for the global and Danish exploitation of wind energy. Research focuses on key technical-scientific fields, which are central for the development, innovation and use of wind energy and provides the basis for advanced education at the education.

We have more than 230 employees including more than 150 academics and 40 PhD students from more than 37 different countries. Research is conducted within 10 sections and coordinated and developed via 3 cross-cutting programmes on Siting and Integration, Offshore Wind Energy and Wind Turbine Technology.