Accelerating changes in ice mass within Greenland, and the ice sheet's sensitivity to atmospheric forcing

Bevis, Michael; Harig, Christopher; Khan, Shfaqat Abbas; Brown, Abel; Simons, Frederik J.; Willis, Michael; Fettweis, Xavier; van den Broeke, Michiel R.; Madsen, Finn Bo; Kendrick, Eric; Caccamise, Dana J.; van Dam, Tonie; Knudsen, Per; Nylen, Thomas

Published in:
Proceedings of the National Academy of Sciences of the United States of America

Link to article, DOI:
10.1073/pnas.1806562116

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing

Michael Bevisa,b,1, Christopher Harigb, Shfaqat A. Khanb, Abel Brownb, Frederik J. Simonsd, Michael Willise, Xavier Fettweisf, Michiel R. van den Broekeg, Finn Bo Madseh, Eric Kendrickh, Dana J. Caccamisei, Tonie van Damh, Per Knudsena, and Thomas Nylenb

aSchool of Earth Sciences, Ohio State University, Columbus, OH 43210; bDepartment of Geosciences, University of Arizona, Tucson, AZ 85721; cDTU Space, National Space Institute, Danish Technical University, 2800 Kongens Lyngby, Denmark; dDepartment of Geosciences, Princeton University, Princeton, NJ 08544; eDepartment of Geological Sciences, University of Colorado, Boulder, CO 80309; fDepartment of Geography, University of Liège, 4000 Liège, Belgium; gInstitute for Marine and Atmospheric Research, Utrecht University, 3508 TA Utrecht, The Netherlands; hFaculty of Sciences, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; and iUNAVCO, Inc., Boulder, CO 80301

*To whom correspondence should be addressed. Email: mbevis@osu.edu.

From early 2003 to mid-2013, the total mass of ice in Greenland declined at a progressively increasing rate. In mid-2013, an abrupt reversal occurred, and very little net ice loss occurred in the next 12–18 months. Gravity Recovery and Climate Experiment (GRACE) and global positioning system (GPS) observations reveal that the spatial patterns of the sustained acceleration and the abrupt deceleration in mass loss are similar. The strongest accelerations tracked the phase of the North Atlantic Oscillation (NAO). The negative phase of the NAO enhances summertime warming and insolation while reducing snowfall, especially in west Greenland, driving surface mass balance (SMB) more negative, as illustrated using the regional climate model MAR. The spatial pattern of accelerating mass changes reflects the geography of NAO-driven shifts in atmospheric forcing and the ice sheet’s sensitivity to that forcing. We infer that southwest Greenland will become a major future contributor to sea level rise.

Significance

The recent deglaciation of Greenland is a response to both oceanic and atmospheric forcings. From 2000 to 2010, ice loss was concentrated in the southeast and northwest margins of the ice sheet, in large part due to the increasing discharge of marine-terminating outlet glaciers, emphasizing the importance of oceanic forcing. However, the largest sustained (~10 years) acceleration detected by Gravity Recovery and Climate Experiment (GRACE) occurred in southwest Greenland, an area largely devoid of such glaciers. The sustained acceleration and the subsequent, abrupt, and even stronger deceleration were mostly driven by changes in air temperature and solar radiation. Continued atmospheric warming will lead to southwest Greenland becoming a major future contributor to sea level rise.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: mbevis@osu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805662116/-/DCSupplemental.

Published online January 22, 2019.
and model displacements. We combined the daily displacement anomalies for 46 GNET stations, and then computed the 25th, 50th, and 75th percentiles of this point cloud using a traveling window of width 0.1 y. We see that the 50th percentile curve (i.e., the median anomaly) deflects below the zero line near epoch 2013.4 and remains negative thereafter.

The epoch 2013.4 falls 18 d after the positive peak of the purely cyclical component (Fig. 1C) of the model mass curve (Fig. 1A), and 21–25 d after the annual onset of negative mass balance (for Greenland as a whole) inferred from GRACE in 2004–2012 (SI Appendix, Fig. S1). Since only a small fraction of the net mass loss accumulated during the “mass loss season” accumulates in the first 21–25 d of that season, we suggest that it took long for the deviation between predicted mass change and actual mass change (in 2013) to be clearly resolved by GNET, that is, for the trend in the percentile curves to emerge from the oscillatory “noise” seen in these curves before 2013.4.

Both GRACE and GNET imply that the 2013–2014 Pause arose because the expected season of negative mass balance closely associated with summertime in the decade before 2013 did not develop, or barely developed, during the (recently) “anomalous” summer of 2013. If we examine GRACE’s mass anomaly curve (Fig. 1D), we can assess the magnitude of this deviation by averaging the residuals in the interval 2013.79–2014.45 (Fig. 1). We find that the mass loss accumulated (in Greenland as a whole) in the summer of 2013 was 284 ± 43 Gt smaller than expected based on the accelerating trend observed in the previous decade. Total ice mass fell by no more than ~75 Gt during the Pause (Fig. 1B and E). Of course, little or no net change in ice mass during the Pause does not imply that there was no loss anywhere within Greenland, but rather that local changes in ice mass tended to cancel out. The Pause ended by early 2015 (Fig. 1B and E), but given the emergent onset of renewed ice loss, and the temporally correlated noise in the GRACE residuals (Fig. 1C), it is hard to determine the end time of the Pause with any great precision.

Van Angelen et al. (13) noted that the accelerating ice loss observed by GRACE through year 2012 correlated with an increasingly negative summertime North Atlantic Oscillation (NAO) index during six successive summers (Fig. 1F). The negative phase of the summertime NAO (sNAO) index increases the prevalence of high pressure, clear-sky conditions, enhancing surface absorption of solar radiation and decreasing snowfall, and it causes the advection of warm air from southern latitudes into west Greenland. These changes promote higher air temperatures, a longer ablation season and enhanced melt and runoff (14). Van Angelen et al. (13) concluded that if the sNAO switched back to positive values after 2012, then surface mass balance (SMB) might partially recover. Indeed, not only did the...
and

Mean station accelerations in uplift for two overlapping 5-y time periods. (A) Mean accelerations in the period that began in 2008.4, or when each GNET GPS station was established (if afterward), and ended in 2013.4. (B) The mean accelerations in the time interval 2010.4–2015.4. (C) Empirical cumulative distribution functions (CDFs) for the accelerations in each time period. U-Accel, vertical acceleration.

June to August (JJA) and June to September (JJAS) NAO indices turn positive in 2013, but the change in each of these nNAO indices from 2012 to 2013 was the single biggest interannual change recorded since 1950 (Fig. 1 F and G and SI Appendix, Fig. S7). Furthermore, when the nNAO index again turned strongly negative in 2015, significant ice loss was reestablished (Fig. 1 B and E), and the Pause had ended.

The Spatial Pattern of the Mass Accelerations Recorded by GRACE

We address the spatial structure of the mass accelerations discussed above, by applying the same annual cycle plus quadratic trend model to each cell or “pixel” in our time series of GRACE mass grids. Having fit the composite mass trajectory model to each grid cell in Greenland, we can remove the mean annual cycle, just as we did in Fig. 1 B, so as to isolate the decycled or seasonally adjusted cumulative mass changes from 2003.12 to 2006.45, 2009.79, or 2013.46 (Fig. 4 A–C). The first two subplots (Fig. 4 A and B) are similar to those of Khan et al. (2) (see their figure 6 A and B), depicting the spread of ice loss from southeast to northwest Greenland between 2003 and 2009. We also estimated the decycled mass rate as a function of time (Fig. 4 D–F), by taking the first temporal derivative of the quadratic mass trend curve. Note the change in sign of mass rate in southeast Greenland in 2006.45 and 2009.79, and the strong negative acceleration in the central west and southwest margins of the GrIS. Shifts in dynamic mass balance (DMB), that is, mass changes driven by changes rates of glacial discharge, at Jakobshavn Isbrae (II), certainly contributed to the observed mass acceleration in the central west margin before 2006 (ref. 10; SI Appendix, section 7). However, further south, there are almost no major marine-terminating glaciers, so the acceleration field in the southwest margin was dominated by SMB, not DMB. This conclusion is supported by model results computed by the regional climate models MAR (15, 16) and...
RACMO2 (5). The temporal correlation between summertime SMB and the phase of the NAO is seen in Fig. 1F. We estimated the best linear trend in SMB predicted by MAR for the years 2004–2012 (Fig. 5C). SMB expressed in water equivalent has units of millimeters per year, so SMB trend has units of millimeters per square year, that is, mass acceleration. The SMB trend field is broadly consistent with the mass acceleration field before 2013, given that the MAR output has much higher resolution (∼10 km) than GRACE (∼334 km). GRACE’s inevitable blurring of the SMB trend field both broadens the zone of negative mass acceleration in southwest Greenland, and lowers its amplitude. The MAR SMB trend in the northeast GrIS is more pronounced than in adjacent areas, but this local feature is a little less pronounced, relative to GRACE’s secondary peak in mass acceleration (Fig. 5A, “ne”) suggesting that in this area changes in ice dynamics also played a role, as discussed later on. Note that both GRACE and MAR agree on near-zero or slightly positive mass accelerations in the east and southeast margins (Fig. 5A, “e” and “se”), respectively. MAR’s result for the southeast is associated with positive snowfall anomalies. GNET reveals a slightly more complex situation in which accelerations in uplift rates change sign from one major outlet glacier to the next (Fig. 2A and SI Appendix, Fig. S24). GRACE tends to smooth out these alternating accelerations in dynamic mass change and blends the result with the more subdued SMB trend due to increased snowfall accumulation.

Topography Modulates the Impact of Atmospheric Warming

The negative phase of the NAO in summertime enhances melting over much of Greenland, but especially in west Greenland (13, 14). The progressive, pre-2013 warming of west Greenland summers was not as spatially focused as the strongest negative mass accelerations (Fig. 5A and C). The spatial distribution of ablation is largely controlled by the spatial distribution of air temperature and solar radiation. The ice sheet’s sensitivity to surface warming is strongly influenced by surface elevation. If the surface warms from −1 to 3 °C, for example, then the impact of 4 °C warming is vastly greater than if the surface warms from −5 °C to −1 °C. This is why simple models of melting are often expressed in terms of seasonal sums of positive degree-day (17, 18). The amount of melting induced by a temperature increase is strongly dependent on initial surface temperature, and thus on latitude and elevation (SI Appendix, Fig. S11), as well as time of year. The influence that surface elevation has on melting and runoff is enhanced by a powerful positive feedback. The ice exposed in the ablation zone has lower albedo than snow surfaces, leading to greater absorption of solar radiation. Indeed, the largest source of melt energy in the ablation zone is absorbed solar energy, not the transfer of sensible heat from the air (19). Nevertheless, the primary control on the geometry of the ablation zone is air temperature, and, at a given time of year, near-surface temperature is largely controlled by latitude and elevation. In a given latitude zone, lower topographic gradients near the margins of the ice sheet lead to a wider ablation zone, thus acting as primary controls on the spatial extent of the albedo feedback.

Even if the southeast and southwest margins of the GrIS were exposed to similar positive temperature trends, the mass loss trend would be more pronounced at the southwest margin because it has a far greater area of low elevation ice surface per unit length of margin than does the southeast margin (Fig. 5D). Similarly, the low elevation and surface slopes prevailing at the northeast margin ensure that it incorporates a far greater area of low elevation ice surface than does a similarly sized segment of the northernmost margin of the ice sheet, or a similarly sized segment of the east margin (region “e” in Fig. 5A) where surface elevations >2 km loom over the nearby edges of the ice sheet. This helps us explain the localized center of sustained negative mass acceleration in the northeast (Fig. 5A, ne). The locally enhanced sensitivity of the
northeast margin to atmospheric forcing, relative to immediately adjacent areas, was also apparent in the correlated 2010 melting day and uplift anomalies reported by Bevis et al. (8) (see their figure 5).

Transient regional warming has less impact on higher portions of the GrIS surface than on lower portions. The high mountains that dam the ice sheet in central east Greenland ensure that there is very little low surface ice per unit distance along the general trend of this ice margin, in comparison with the adjacent margins to the north and south (Fig. 5D). This largely explains the near zero mean mass acceleration rates we inferred for east Greenland (Fig. 5A, area “e”). In summary, we suggest that both the geographical distribution of the progressive summertime warming before 2013, which was mostly focused in the west of Greenland, and the spatial structure of ice sheet sensitivity to atmospheric forcing, which is dominated by ice sheet topography near its margins, jointly explain most of the spatial pattern of SMB trend (Fig. 5C) and the mass acceleration field (Fig. 5A) sensed by GRACE before 2013. This interpretation is supported by the recent history of runoff within the Taseriaq basin of southwest Greenland (20).

Atmospheric Forcing, SMB and DMB

Accelerations in total ice mass change are driven by changes in SMB and DMB. (Note that DMB = −D, where D is discharge, so total ice mass balance = SMB + DMB = SMB − D.) DMB changes are commonly driven by (i) changes in ocean circulation and temperature, and (ii) changes in the floating portion of the ice sheet and the mélange of icebergs and sea ice, which modulates their buttressing effect. Both changes affect calving rates and the velocity of outlet glaciers, and cause inland changes in ice thickness.

The secondary negative mass acceleration peak in northeast Greenland (Fig. 5A, “ne”) has already been associated with dynamic thinning in and near the outlet glaciers of the Northeast Greenland Ice Stream (12), but this does not rule out a role for atmospheric forcing. The observation that the mass anomaly field (Fig. 5B) associated with the Pause has its third largest center of mass gain in northeast Greenland, close to a center of accelerating mass loss in the previous decade, does suggest that this area was also affected by the shifting phase of the NAO (21). All three GNET stations close to the GrIS margin in northeast Greenland recorded accelerating uplift from their date of installation through 2012 (12), and they all recorded negative uplift anomalies after mid-2013 (SI Appendix, Fig. S6). This reversal occurred rather later than 2013.4–2013.5, presumably because summer arrives later in this region than it does in southern or central Greenland, and therefore the nondevelopment of a previously typical negative SMB season would not be evident until later in the year. The fact that a sustained acceleration followed by an abrupt deceleration is evident for northeast Greenland in both the GRACE and GNET time series suggests a connection to the NAO-driven changes identified in southwest Greenland. The MAR SMB trend field (Fig. 5C) does indicate greater mass loss acceleration in the northeast sector than in either adjacent sector of the ice margin, but this is not quite as pronounced as one might expect based on the GRACE results (Fig. 5A).

We suggest that sustained summertime warming before 2013 drove a shift in DMB, as well as SMB, in northeast Greenland. There are at least two possible mechanisms: (i) regional warming drove a reduction in the extent of the floating ice sheet before the summer of 2013, which diminished its buttressing effect on the outlet glaciers, prompting increased rates of discharge which thinned the ice, as observed in the Antarctic Peninsula (22, 23), and (ii) increases in meltwater production can modulate dynamical changes in ice mass. The northeast margin of the GrIS has a much greater area of low elevation surface than the margin sectors on either side (Fig. 5D), which would expand the area of enhanced meltwater production. Increased surface melting lowers the viscosity of the ice sheet via the advection of latent heat to its interior (24), and this
mechanism will be volumetrically concentrated in thinner portions of ice sheet associated with low surface elevations. Meltwater can also accelerate ice flow by modifying the mechanical conditions at the base of the ice sheet (25–27). In extreme cases, the development of subglacial lakes can lift portions of an ice sheet or an ice cap from its bed (28, 29). The hypothesis that atmospheric warming can promote increases in discharge, dynamic thinning, and glacial retreat has recently been invoked in Prudhoe Land in northwest Greenland (30).

Discussion

The coverage and quality of our meteorological, glaciological, and geodetic datasets decline as we regress to the mid-1900s, as does our ability to track the relative importance of SMB and DMB as drivers of deglaciation. Even so, it is clear that the sustained acceleration in mass loss recorded by GRACE before mid-2013 was completely unprecedented (31), as was the collapse of seasonally adjusted mass rate from its peak value to nearly zero in the following 12–18 mo. Mass rate scales with SMB and DMB, so mass acceleration scales with the trend or rate of change of SMB and DMB. Greenland’s air–sea–ice system crossed one or more thresholds or tipping points near the beginning of this millennium, triggering more rapid deglaciation. The pronounced negative shift in spatially integrated SMB (Fig. 5E and SI Appendix, Fig. S8) was dominated by increased summertime melt (Fig. 5E and G). Runoff increased over most of the flanks of the GrIS, but most noticeably in southwest Greenland, where the margin was gaining mass in 2003 but strongly losing mass by late 2012 (Fig. 4). Total glacial discharge integrated over southwest Greenland is not only very low (9.5 ± 1.5 Gt/y) compared with other areas (32), it has been unusually stable as well. South of JJ, mass acceleration was dominated by falling SMB from 2000 onward. A little further north, seasonally adjusted discharge rates at JJ increased by ~44% from early 2000 to early 2006, but barely changed between early 2006 and early 2012 (32). It was SMB that was strongly falling in this second 6-y time interval, not DMB (10). Similar considerations apply in southeast Greenland (32). The decadal acceleration in mass loss in southwest Greenland arose due to the combination of sustained global warming and positive fluctuations in temperature and insolation driven by the NAO. In SI Appendix, we develop an analogy with the global coral bleaching events triggered by every El Niño since that of 1997/1998, but not by any earlier El Niño event. Since 2000, the NAO has worked in concert with global warming to trigger major increases in summertime runoff. Before 2000, the air was too cool for the NAO to do the same. In a decade or two, global warming will be able to drive 2012 levels of runoff with little or no assistance from the NAO. In the shorter term, we can infer that the next time NAO turns strongly negative, SMB will trend strongly negative over west and especially southwest Greenland, just as future warming of the shallow ocean is expected to have its largest impact, via DMB (33, 34), in southeast and northwest Greenland. Because ice sheet topography equips southwest Greenland with greater sensitivity to atmospheric forcing, we infer that within two decades this part of the GrIS will become a major contributor to sea level rise. There is also the suggestion that enhanced summertime melting may induce more sustained increases in discharge rates.

Materials and Methods

We used the global GRACE solution CSR release RL-05. Our regional GRACE analysis used the methodology of ref. 3. Our GPS data processing followed that of ref. 6, as did our approach to time series analysis, both for GRACE and GNET. We characterized SMB in Greenland using the regional climate models MAR (15) and RACMO2 (5). Further details, and a discussion of data access, can be found in SI Appendix.

ACKNOWLEDGMENTS. We thank Robin Abbott of Polar Field Services for her unflagging logistical support. We are grateful to two anonymous reviewers for their comments and suggestions. This research and GNET were supported by National Science Foundation Grant PLR-1111882.

Bevis et al.
PNAS | February 5, 2019 | vol. 116 | no. 6 | 1939

APPLIED PHYSICAL SCIENCES