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Abstract
Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action 
during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive 
function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance 
between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and 
reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing 
compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal 
exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current 
data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospec-
tive marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to 
human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a 
biomarker in both a regulatory and clinical setting.

Keywords Anogenital distance · Reproduction · Endocrine disruptors · Toxicology · Risks assessment

Introduction

Few things permeate our lives more than our sex and repro-
ductive capacity, influencing not only our physical charac-
teristics, but also behaviour and social perception. Ensur-
ing proper reproductive development and life-long health 
therefore seems obvious, yet modern living is increasingly 
putting pressure on the processes of sexual differentiation 
and reproductive function. Exposure to endocrine disrupting 
chemicals (EDCs) during fetal life in both males and females 

has been raised as particularly disconcerting, since this is the 
period when the sexual organs form and, in many respects, 
lay the foundation for adult reproductive health (Johansson 
et al. 2017; Skakkebaek et al. 2016). Much effort has thus 
been invested in understanding the relationships between 
fetal exposure to xenobiotics and reproductive disorders, as 
well as to devise testing strategies to screen chemicals for 
potential endocrine disrupting effects.

In males, reproductive disorders associated with impaired 
fetal testis development or function vary in both phenotype 
and time of manifestation. Often described by the ‘testicular 
dysgenesis syndrome’ hypothesis (Skakkebaek et al. 2016), 
these male disorders range from hypospadias and cryptor-
chidism in infants (Hsieh et al. 2008, 2012; Jain and Singal 
2013; Thankamony et al. 2014), to low testosterone levels, 
impaired semen quality and fertility issues in adult men 
(Eisenberg et al. 2011, 2012; Mendiola et al. 2011). Because 
of this complexity, it is difficult to adopt a single biomarker 
to use in animal toxicity studies aimed at testing chemicals 
for potential adverse effects on male reproductive health. 
The anogenital distance (AGD), however, is considered a 
broad biomarker capable of both retrospectively determine 
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early-life androgen disruption and predict late-life reproduc-
tive disorders in male offspring (Dean and Sharpe 2013; 
Thankamony et al. 2016).

The AGD refers to the distance between the anus and the 
external genitalia, and is approximately twice the length in 
male compared to female new-borns. This sexual dimor-
phism is apparent in rodents as well as humans (Salazar-
Martinez et al. 2004; Thankamony et al. 2009) and is a con-
sequence of the androgen-driven dimorphic differentiation 
of the two sexes (Fig. 1). This sexual bifurcation extends to 
the perineum, where a muscular complex develops in males, 
but not in females. A short male AGD is, therefore, consid-
ered a marker of disrupted androgen action. In rodents, a 
short male AGD largely predicts the same adverse effect out-
comes as in humans. In fact, the idea of investigating AGD 
in human epidemiological studies came from rodent devel-
opmental and reproductive toxicity studies, where AGD had 
been used for decades as a marker of impaired fetal androgen 
action and regarded as a an adverse outcome (Tables 1, 2).

In this review, we discuss current knowledge concerning 
AGD measurements, both as a clinical marker in humans and 
as a morphometric measure of fetal androgen disturbance in 
rodent toxicity studies. We have collated a growing body of 
toxicological studies that have reported on AGD measure-
ments to gain a better overview of what evidence support 
the exclusive androgen-driven masculinization thesis, or to 
tease out other potential mechanisms that may lead to similar 
effects on AGD. However, first, to better appreciate why the 
AGD is a useful marker to assess early-life androgen disrup-
tion, we need to broadly outline how the two sexes develop.

Sexual differentiation and the importance 
of early androgen signaling

From gonadal sex determination to testosterone 
synthesis

At first, the male and female embryos are morphologically 
indistinguishable and only differentiate down two distinct 
trajectories after the appearance of either testes or ova-
ries. The specification of reproductive sex, or gonadal sex 
determination, is genetically controlled by the Y-linked sex 
determining gene Sry that is expressed in XY, but not in 
XX gonads, triggering testis differentiation in male fetuses 
(Koopman et al. 1991; Svingen and Koopman 2013). Sub-
sequently, the testes differentiate into compartmentalized 
organs comprising testis cords and an interstitial space. 
Fetal Leydig cells differentiate within the interstitium and 
become the main site of androgen synthesis necessary for 
development of accessory male sex organs and general 
masculinization of the body (Svingen and Koopman 2013). 
The testes also produce the peptide hormone Insulin-like 

factor 3 (INSL3) that is required for transabdominal tes-
ticular descent (Nef and Parada 1999), and anti-Müllerian 
hormone (AMH) which ensures regression of the Müllerian 
ducts; a paired structure that otherwise would develop into 
the female reproductive tract (Behringer 1994; Josso et al. 
1993). In simple terms, the absence of these ‘male-centric’ 
factors allows for the female reproductive system to develop.

Testosterone drives masculinization

Simply put, testosterone regulates secondary sex differentia-
tion. If testosterone is present, the body will develop male 
traits; if not present, the body will develop female traits 
(Fig. 1). However, the full picture is much more complex. 
First, many factors other than testosterone are involved, 
including AMH and INSL3 as mentioned above, but also 
others such as Hedgehog (Hh), Wingless-like (Wnt) and 
various growth factors. Second, androgen-dependent mascu-
linization processes are likely influenced by actual hormone 
levels in target tissues, meaning that masculinization cannot 
be viewed as a simple ‘on–off’ switch, but rather a scenario, 
where more or less androgens can, to some degree, result 
in more or less masculine traits. From this viewpoint, it is 
more difficult to define when a morphometric change can 
be regarded as adverse or not. Nevertheless, as shown by 
Alfred Jost more than half a century ago (Jost 1947, 1953), 
androgens are the main drivers of male sex differentiation 
and are essential during a critical time window of develop-
ment (MacLeod et al. 2010).

The fetal masculinization process involves numerous tis-
sues and organs, including development of external geni-
talia and sex-specific differentiation of the perineum: the 
region between anus and genitalia (Fig. 1). In these tissues, 
the process seems largely governed by dihydro-testosterone 
(DHT) which is locally converted from testosterone by the 
enzyme 5α-reductase. DHT acts by binding to and activat-
ing the Androgen receptor (AR), a nuclear hormone recep-
tor responsible for regulating transcription of target genes 
(Fig. 2).

It has been suggested that the AGD is masculinized dur-
ing development when AR activation stimulates the growth 
of the perineal muscles levator ani and bulbocavernosus 
(LABC) complex. In males, AR is expressed in non-myo-
cytic cells of the LABC (Ipulan et al. 2014). Activation of 
AR in these cells prompts the growth of the LABC complex 
and the resulting size is thought to directly affect the AGD. 
Indeed, ablation of AR in rodents impairs development of 
the LABC complex and results in feminized male AGD (Ipu-
lan et al. 2014; MacLean et al. 2008; Notini et al. 2005).

It is likely that more subtle changes in androgen levels, 
as for instance seen with fetal exposure to anti-androgenic 
compounds, can affect AGD by the same mechanism. This is 
supported by rodent toxicity studies, where a short AGD is 
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often associated with a reduced LABC weight (Christiansen 
et al. 2008). There are, however, indications that effects on 
AGD are more complicated than just androgens stimulating 
muscle growth and anti-androgens that depress this. First, 

while AGD is thought to be relatively stable throughout life, 
the perineum is in fact responsive to postnatal changes in 
androgen levels (Kita et al. 2016; Mitchell et al. 2015). Sec-
ond, certain EDCs have been found to induce both shorter 

Genital 
tubercle
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Fig. 1  Development of mammalian external genitalia. Initially, male 
(XY) and female (XX) fetuses are morphologically indistinguish-
able. During organogenesis, the bipotential gonadal ridges—located 
as paired structures running parallel on either side of the body mid-
line—are instructed to differentiate into either testes or ovaries 
depending on the expression or not of the Y-chromosomal gene Sry 
in males and females, respectively. This takes place around gesta-
tional day 12 in rats and during gestational week 6 in humans. Fol-
lowing gonadal sex determination, the testes will quickly differenti-
ate into compartmentalized structures comprising testis cords and an 
interstitial space. Steroidogenic Leydig cells appear in the interstitium 
and start synthesizing androgens—primarily testosterone—that are 

secreted into the circulation, where they will prompt androgen-sen-
sitive tissue to masculinize. The absence of Leydig cells and andro-
gens in ovaries allows for female differentiation to occur. Locally, in 
the perineum, testosterone is converted to DHT, which in turn can 
activate the Androgen receptor and initiate a regulatory cascade that 
instructs the tissue to develop into male external genitalia, including 
differentiation of the LABC muscular complex, fusion of the genital 
swellings to form the scrotum, and growth of the genital tubercle into 
a penis. From this follows an elongation of the distance between geni-
talia and anus, referred to as the anogenital distance (AGD). On aver-
age, the male AGD is approximately twice that of female and it is a 
morphometric readout of fetal androgen exposure or activity



256 Archives of Toxicology (2019) 93:253–272

1 3

Ta
bl

e 
1 

 S
um

m
ar

y 
of

 ra
t t

ox
ic

ity
 st

ud
ie

s r
ep

or
tin

g 
on

 A
G

D
 m

ea
su

re
m

en
ts

 fo
llo

w
in

g 
ge

st
at

io
na

l e
xp

os
ur

e 
to

 p
ht

ha
la

te
s

Su
bs

ta
nc

e
D

os
e 

at
 m

ax
 e

ffe
ct

s 
(m

g/
kg

 b
w

/d
ay

)
M

al
e 

A
G

D
 m

ax
 e

ffe
ct

 (%
 sh

or
te

r)
M

al
e 

A
G

D
i m

ax
 e

ffe
ct

 (%
 sh

or
te

r)
Fe

m
al

e 
A

G
D

 o
r 

A
G

D
i (

↑/
↓)

Re
fe

re
nc

es

In
cr

ea
si

ng
 c

ha
in

 le
ng

th
 (d

es
ce

nd
in

g 
or

de
r)

D
M

P
75

0
n.

e.
n.

e.
n.

e.
G

ra
y 

et
 a

l. 
(2

00
0)

D
EP

75
0

n.
e.

n.
e.

n.
e.

G
ra

y 
et

 a
l. 

(2
00

0)
D

iB
P

25
0

n.
e.

5
x

Sa
ill

en
fa

it 
et

 a
l. 

(2
01

7)
60

0
14

9
↑

B
or

ch
 e

t a
l. 

(2
00

6)
62

5
22

x
n.

e.
Sa

ill
en

fa
it 

et
 a

l. 
(2

00
8)

D
B

P
50

0
n.

e.
x

x
Sc

ot
t e

t a
l. 

(2
00

7)
50

0
9–

14
12

(M
ar

tin
o-

A
nd

ra
de

)
n.

e.
M

ar
tin

o-
A

nd
ra

de
B

ar
lo

w
 e

t a
l. 

(2
00

4)
, 

H
ow

de
sh

el
l e

t a
l. 

(2
00

7)
, M

ar
tin

o-
A

nd
ra

de
 e

t a
l. 

(2
00

9)
 

an
d 

W
ol

f e
t a

l. 
(1

99
9)

50
0

20
–2

8
21

(d
e 

M
el

lo
 S

an
ot

os
)

n.
e.

Sa
ill

en
fa

it
C

ar
ru

th
er

s a
nd

 F
os

te
r 

(2
00

5)
, d

e 
M

el
lo

 
Sa

nt
os

 e
t a

l. 
(2

01
7)

, 
M

yl
ch

re
es

t e
t a

l. 
(1

99
9)

, S
ai

lle
nf

ai
t 

et
 a

l. 
(2

00
8)

, S
co

tt 
et

 a
l. 

(2
00

8)
 a

nd
 W

ol
f 

et
 a

l. 
(1

99
9)

~ 
64

0
11

10
x

C
le

w
el

l e
t a

l. 
(2

01
3)

~ 
65

0
43

26
(A

G
D

/B
W

)
n.

e.
Em

a 
et

 a
l. 

(1
99

8)
~ 

70
0

19
In

cr
ea

se
s a

t o
th

er
 d

os
es

x
n.

e.
Le

e 
et

 a
l. 

(2
00

4)
75

0
x

9
x

Jia
ng

 e
t a

l. 
(2

00
7)

75
0

20
–2

4
x

n.
e.

M
yl

ch
re

es
t

M
yl

ch
re

es
t e

t a
l. 

(1
99

8)
 

an
d 

va
n 

de
n 

D
rie

sc
he

 
et

 a
l. 

(2
01

7)
75

0
36

x
x

Va
n 

de
n 

D
rie

sc
he

 e
t a

l. 
(2

01
2)

85
0

20
x

x
Jia

ng
 e

t a
l. 

(2
01

1)
 a

nd
 

Li
u 

et
 a

l. 
(2

01
6)

85
0

x
6

x
Jia

ng
 e

t a
l. 

(2
01

5b
)

90
0

27
x

x
Li

 e
t a

l. 
(2

01
5)

15
00

48
26

(A
G

D
/B

W
)

n.
e.

Em
a 

et
 a

l. 
(2

00
0)

M
B

uP
75

0
39

29
n.

e.
Em

a 
an

d 
M

iy
aw

ak
i 

(2
00

1)



257Archives of Toxicology (2019) 93:253–272 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Su
bs

ta
nc

e
D

os
e 

at
 m

ax
 e

ffe
ct

s 
(m

g/
kg

 b
w

/d
ay

)
M

al
e 

A
G

D
 m

ax
 e

ffe
ct

 
(%

 sh
or

te
r)

M
al

e 
A

G
D

i m
ax

 e
ffe

ct
 (%

 sh
or

te
r)

Fe
m

al
e 

A
G

D
Re

fe
re

nc
es

In
cr

ea
si

ng
 c

ha
in

 le
ng

th
 (d

es
ce

nd
in

g 
or

de
r)

D
EH

P
30

x
n.

e.
n.

e.
C

hr
ist

ia
ns

en
 e

t a
l. 

(2
00

9)
15

0
n.

e.
n.

e.
n.

e.
M

ar
tin

o-
A

nd
ra

de
 e

t a
l. 

(2
00

9)
30

0
x

5
n.

e.
N

ar
de

lli
 e

t a
l. 

(2
01

7)
50

0
10

x
x

H
ow

de
sh

el
l e

t a
l. 

(2
00

7)
50

0
18

18
x

Sa
ill

en
fa

it 
et

 a
l. 

(2
00

9b
)

75
0

17
–1

8
17

(K
ita

)
x

Ja
rfe

lt 
et

 a
l. 

(2
00

5)
, 

K
ita

 e
t a

l. 
(2

01
6)

 a
nd

 
Li

n 
et

 a
l. 

(2
00

9)
75

0
30

–3
4

x
n.

e.
G

ra
y

G
ra

y 
et

 a
l. 

(2
00

0)
 a

nd
 

W
ol

f e
t a

l. 
(1

99
9)

90
0

14
x

x
C

hr
ist

ia
ns

en
 e

t a
l. 

(2
01

0)
10

00
30

11
(A

G
D

/B
W

)
x

Li
 e

t a
l. 

(2
01

3)
15

00
27

x
n.

e.
M

oo
re

 e
t a

l. 
(2

00
1)

D
H

P
50

0
20

23
x

Ay
do

ğa
n 

A
hb

ab
 a

nd
 

B
ar

la
s (

20
15

)
D

C
H

P
~ 

35
0

6
7

n.
e.

H
os

hi
no

 e
t a

l. 
(2

00
5a

)
50

0
27

26
x

Ay
do

ğa
n 

A
hb

ab
 a

nd
 

B
ar

la
s (

20
15

)
75

0
17

13
n.

e.
Sa

ill
en

fa
it 

et
 a

l. 
(2

00
9a

)
B

B
P

50
0

8–
13

x
↑N

ag
ao

H
ot

ch
ki

ss
 e

t a
l. 

(2
00

4)
 

an
d 

N
ag

ao
 e

t a
l. 

(2
00

0)
75

0
9

x
n.

e.
Ty

l e
t a

l. 
(2

00
4)

75
0

30
x

n.
e.

G
ra

y 
et

 a
l. 

(2
00

0)
10

00
38

29
n.

e.
Em

a 
an

d 
M

iy
aw

ak
i 

(2
00

2)
M

B
eP

37
5

30
29

n.
e.

Em
a 

et
 a

l. 
(2

00
3)

D
nH

P
50

0
18

18
x

Sa
ill

en
fa

it 
et

 a
l. 

(2
00

9b
)

75
0

35
31

↓
Sa

ill
en

fa
it 

et
 a

l. 
(2

00
9a

)
D

iH
P

~ 
50

0
15

x
n.

e.
M

cK
ee

 e
t a

l. 
(2

00
6)

D
H

PP
10

00
11

10
n.

e.
Sa

ill
en

fa
it 

et
 a

l. 
(2

01
1)

D
nO

P
10

00
n.

e.
n.

e.
x

Sa
ill

en
fa

it 
et

 a
l. 

(2
01

1)
D

O
TP

75
0

n.
e.

n.
e.

n.
e.

G
ra

y 
et

 a
l. 

(2
00

0)



258 Archives of Toxicology (2019) 93:253–272

1 3

and longer female AGD or have multiple modes of action, 
as will be discussed later. Thus, more research is needed to 
fully understand how AGD is affected by fetal endocrine 
disruption.

Anogenital distance: a biomarker for fetal 
hormone action and late‑life reproductive 
health

A large number of studies now support various aspects of the 
‘testicular dysgenesis syndrome’ (TDS) hypothesis. How-
ever, it has also become increasingly clear that the relation-
ship between hormone disruption and disease outcome is 
not always obvious. A simple reason for this is that male 
reproductive disorders can arise from various causes, not 
least genetic mutations or even genotypic predispositions. 
This can, in some instances, make it difficult to prove direct 
cause–effect relationships between chemical exposure and 
disease state in humans, especially if contributing genetics 
is present but not characterized. Another major complication 
is the considerable latency between exposure and disease 
manifestation, for instance, with regard to reduced sperm 
quality; a medical condition that can also be influenced by 
many other factors in the years between fetal life, birth, and 
adulthood. Hence, a single common biomarker that can pre-
dict a number of male reproductive disorders could prove 
valuable, both from a scientific and clinical point of view.

AGD measurements in human epidemiology 
and medicine

Fetal exposure to EDCs has been associated with a short 
AGD in new-born boys. Phthalates are the most frequently 
reported chemicals associated with a short AGD (Adibi et al. 
2015; Bornehag et al. 2015; Bustamante-Montes et al. 2013; 
Marsee et al. 2006; Suzuki et al. 2012; Swan et al. 2005), 
but also other compounds including dioxins (Vafeiadi et al. 
2013), bisphenol A (Mammadov et al. 2018; Miao et al. 
2011) and mild analgesics (Fisher et al. 2016; Lind et al. 
2017). Notably, several studies have not found significant 
correlations between exposure levels and short AGD in boys, 
including some phthalates (Jensen et al. 2016), dichloro-
diphenyl-trichloroethane (DDT) (Bornman et al. 2016), tri-
closan (Lassen et al. 2016), and various pesticides (Dalsager 
et al. 2018). These discrepancies do not necessarily diminish 
the cause for concern, but rather highlight the challenges 
of obtaining evidence for causal relationships from human 
epidemiological studies.

With regard to reproductive disorders, many studies 
have reported significant correlations between short AGD 
in boys  and for instance hypospadias (Cox et  al. 2017; 
Gilboa et al. 2017; Hsieh et al. 2012; Singal et al. 2016), Ta
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Table 2  Summary of rat toxicity studies reporting on AGD measurements following gestational exposure to compounds other than phthalates

Substance Dose at max 
effects (mg/kg bw/
day)

Male AGD max effect (% shorter) Male AGDi max 
effect (% shorter)

Female AGD 
or AGDi (↑/↓)

References

Drugs
Acetylsalicylic acid 400 38 x n.e. Gupta and Goldman (1986)
Aniline 93 x 20 x Holm et al. (2015) (mouse 

study)
Paracetamol 150 9a 10.5a x Kristensen et al. (2011)

150 x 15 x Holm et al. (2015) (mouse 
study)

350 8 9 x van den Driesche et al. (2015)
360 x n.e. n.e. Axelstad et al. (2014)

Dexamethasone 0.1 10 x x Van den Driesche et al. (2012)
Finasteride 0.1 x 9 x Christiansen et al. (2009)

100 33 x x Bowman et al. (2003)
Flutamide 16–20 44Kita 41–42 x Hass et al. (2007); Kita et al. 

(2016)
50 16–53 x x Foster and Harris (2005) and 

McIntyre et al. (2001)
100 33–55 x x Mylchreest et al. (1999), Scott 

et al. (2007) and Welsh et al. 
2007)

Ethinyl estradiol (0.00–0.05) n.e. n.e. (↑)Mandrup Ferguson et al. (2011), 
Howdeshell et al. (2008) and 
Mandrup et al. (2013)

Ketoconazole (50) n.e. x x Wolf et al. (1999)
50 8 11 ↓ Taxvig et al. (2008)

Pesticides
Epoxiconazole 3.75 5a 5a ↑ Hass et al. (2012)

15 7(PND0)a 10(GD21)a ↑ Taxvig et al. (2007)
50 n.e. n.e. n.e. Taxvig et al. (2008)

Myclobutanil 145 12Increased x x Goetz et al. (2007)
Prochloraz (0.01–35) n.e. x (↑)Melching, Hass Christiansen et al. (2009), 

Hass et al. (2012), Melching-
Kollmuss et al. (2017) and 
Vinggaard et al. (2005)

150 x 12 ↑ Laier et al. (2006)
250 6 x ↑ Noriega et al. (2005)

Propiconazole 50 n.e. n.e. n.e. Taxvig et al. (2008)
~ 158 7Increased x x Goetz et al. (2007)

Tebuconazole 12.5–50 n.e. n.e. (↑)Hass Hass et al. (2012) and Taxvig 
et al. (2008)

100 n.e. 10Increased (only at GD21) ↑ Taxvig et al. (2007)
Pesticides
Triadimefon ~ 114 3Increased x x Goetz et al. (2007)
Mancozeb 25 n.e. n.e. n.e. Hass et al. (2012)
Vinclozolin 12 n.e. n.e. n.e. Colbert et al. (2005)

50–60 21Matsuura 9–21 n.e.Matsuura Christiansen et al. (2009) and 
Matsuura et al. (2005a)

~ 100 28 22 x Schneider et al. (2011)
100 28 x x Ostby et al. (1999)
160 x 35 x Hass et al. (2007)
200 46–56 x (↓)Gray Gray et al. (1994) and Wolf 

et al. (2004)
Procymidone 50 10 9 n.e. Hass et al. (2012)

100 24 n.e. x Wolf et al. (1999)
150 x 37 x Hass et al. (2007)
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cryptorchidism (Jain and Singal 2013; Jiang et al. 2015a), 
penile length (Alaee et al. 2014; Thankamony et al. 2014), 
and sperm quality (Eisenberg et al. 2012; Mendiola et al. 
2011). Together, these observations fit the model of a com-
mon ‘fetal origin of disease’, with androgen disruption at the 
root of the problem. However, they cannot provide definite 
proof for cause–effect relationships. There is also the com-
plications of accounting for genetic variations of the fetus 
or maternal characteristics such as parity, factors that them-
selves can influence the AGD (Barrett et al. 2014; Eisen-
berg et al. 2013). This ultimately means that two individuals 
being exposed to the same chemicals could respond differ-
ently and display variable degree of changes to the AGD. 
Because of all these complexities with interpreting human 
data, the rodent models can be used to provide more robust 
causative evidence.

AGD measurements in rodent studies

In rats, a short AGD in male offspring after fetal exposure 
to anti-androgenic compounds often correlates with various 
reproductive disorders (Bowman et al. 2003; Christiansen 
et al. 2008; Welsh et al. 2008, 2010). There is evidence to 
suggest that the more pronounced the effect on the AGD, 
the more likely additional reproductive defects such as 
genital malformations are found (Christiansen et al. 2008). 
However, there is not always a clear correlation between 
the severity of AGD effects and severity or frequency of 
other reproductive malformations, such that AGD cannot 
always stand on its own in the prediction of perceived anti-
androgenic effects.

High-exposure studies have reported on male pups with 
‘female-like’ AGD, where male AGD in exposed offspring is 

AGD data after in utero exposure to various substances and the dose at which maximum shorter mean AGD was observed. In many instances, 
percentage shorter AGD was estimated from published graphs, as raw data were not available. A more complete compilation of data is found in 
Suppl. Table S1
x not assessed, n.e. no effect, ↑ longer female AGD or AGDi, ↓ shorter female AGD or AGDi,DDE DDT metabolite, dichloro-diphenyl-dichloro-
ethylene, TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin, HBM 2-hydroxy-4-methoxybenzone, OMC octyl methoxycinnamate
a Non-monotonic (low-dose) effect

Table 2  (continued)

Substance Dose at max 
effects (mg/kg bw/
day)

Male AGD max effect (% shorter) Male AGDi max 
effect (% shorter)

Female AGD 
or AGDi (↑/↓)

References

Linuron 50 8Not sig. in 2000 x n.e.2002 McIntyre et al. (2002) and 
McIntyre et al. (2000)

75–100 25–31 x x Hotchkiss et al. (2004) and Wolf 
et al. (1999)

p,p′-DDE 100 6–9 x x Wolf et al. (1999)
50–200 x 11 (AGD/crown−rump length) x Loeffler and Peterson (1999)

Fenitrothion 25 16 x n.e. Turner et al. (2002)
Lindane ~ 16 n.e. n.e. (↓) Matsuura et al. (2005b)
Methoxychlor ~ 82 n.e. x n.e. Masutomi et al. (2003)
UV filters
Benzophenone (~ 130) n.e. n.e. ↓ Hoshino et al. (2005b)
HBM (~ 3250) x n.e. n.e. Nakamura et al. (2015)
OMC (1000) n.e. n.e. n.e. Axelstad et al. (2011)
Preservative
Butylparaben 500 7 6 ↓ Boberg et al. (2016)

600 n.e. n.e. n.e. Boberg et al. (2008)
1000 16 x x Zhang et al. (2014)

Plastic additive
Bisphenol A 0.25 7 x ↓ Christiansen et al. (2014)

(0.0025–50) n.e. n.e.(Ferguson, Tinwell) n.e.Ferguson, 

Tinwell
Ferguson et al. (2011), 

Howdeshell et al. (2008) and 
Tinwell et al. (2002)

(5–385) n.e. x n.e. Takagi et al. (2004)
Nonylphenol (~ 250) n.e. n.e. ↓ Takagi et al. (2004)
Genistein ~ 67 n.e. x n.e. Masutomi et al. (2003)
Other
TCDD 0.1 6–12Not sig. when BW or CR length taken into account x x Bjerke and Peterson (1994) and 

Gray et al. (1995)
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close to 50% that of control males. This does not only make 
the sex of the offspring difficult to determine (Christiansen 
et al. 2010; Hass et al. 2007; Ostby et al. 1999; Parks et al. 
2000), but also result in additional phenotypes including 
nipple retention, genital malformations, and reduced repro-
ductive organ weights (Bowman et al. 2003; Christiansen 
et al. 2008; Welsh et al. 2008, 2010). These reproductive 
phenotypes are all, at least to some degree, under androgen 
control during fetal development, making AGD a potentially 
robust marker for anti-androgenic effects.

AGD in animal toxicity studies: phthalates

The group of compounds most frequently reported to 
affect male AGD is the phthalate esters. As summarized in 
Table 1, many different phthalates have been tested in rats, 
with dibutyl phthalate (DBP) and diethylhexyl phthalate 
(DEHP) being the most prevalent. From an early rat study 
on DEHP showing testicular toxicity (Gray et al. 1977) and 
structure–activity relationships suggesting linear side-chain 
esters of 4–6 carbons to be of specific concern (Foster et al. 
1980), numerous toxicity studies on phthalates followed, 
providing increasing evidence for what later has been termed 
the ‘phthalate syndrome’ [(Foster 2006) and Table 1].

Fetal exposure to certain phthalates (chain length C4–C6) 
results in a short AGD in rat male offspring, without any 
significant effect on female AGD (Table 1). It is, for the most 

part, a dose-dependent effect, where increasing dose levels 
result in progressively shorter AGD. Notably, the magnitude 
of AGD effects can differ greatly between studies, probably 
influenced by parameters such as rat strain, group size, or 
method used for AGD measurements. Body weights may 
also influence AGD measurements, but are unfortunately 
not always accounted for. In developmental toxicity studies, 
the offspring’s body weight is in fact frequently affected, 
particularly at higher exposure levels (Gallavan et al. 1999). 
Since the AGD correlates with the size of the fetus or new-
born pup, body weight should ideally be accounted for by 
calculating the AGDi, or by including body weight as a 
covariate in the statistical analysis. Unfortunately, this is 
not always done, as indicated in Tables 1 and 2. This means 
that a significantly short AGD in many instances may not 
be bona fide feminization effect, but rather a readout of 
stunted growth. To remedy this problem for risk-assessment 
purposes, OECD test guidelines and guidance documents 
stipulate that bodyweight measurements must be included 
alongside AGD measurements (guidance documents 151 
and 43), as discussed in “AGD measurements in regulatory 
toxicology”.

From the studies listed in Table 1, the most pronounced 
effect on AGD was seen for DBP at a dose of 1500 mg/
kg/day. At this high perinatal exposure level, the average 
male AGD was 48% shorter than normal, but when account-
ing for pup body weight, the adjusted value (AGDi) was 

Testosterone
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Testosterone DHT

LEYDIG CELL

TARGET CELL

AR

5α Red.

Transcription

Steroidogenesis

MASCULINIZATION 

Perineum

Penis

Prostate

ANDROGEN SENSITIVE TISSUE - EXTERNAL GENITALIA

Fig. 2  Androgen signaling cascade required for fetal masculinization. 
Testosterone is synthesized in the testicular Leydig cells from precur-
sor cholesterol. Testosterone is then secreted into the body circula-
tion, where it acts on different androgen-sensitive tissues and organs. 
Differentiation of the internal male reproductive accessory organs 
(e.g., epididymis) is stimulated by testosterone, whereas external gen-

italia and perineum requires the local conversion of testosterone into 
DHT by the enzyme 5α-Reductase. DHT can bind to the Androgen 
receptor (AR) which subsequently locates to the nucleus and regulate 
expression of target genes. Cell-dependent regulatory signaling path-
ways are activated and regulate the differentiation into specialized tis-
sues and organs (e.g., LABC complex and external genitalia)
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26% shorter than normal (Ema et al. 2000). With this in 
mind, most of the remaining studies investigating the anti-
androgenic phthalates have shown maximum shorter male 
AGD of between 15 and 30% at exposure doses between 100 
and 500 mg/kg/day (Table 1). Thus, the active phthalates 
typically show marked effects on AGD, but rarely complete 
feminization (i.e., not comparable to female AGD), in a 
dose-dependent manner. These are high doses that also cause 
other reproductive disorders and in some cases show signs 
of systemic toxicity, reduced body weight, or increased liver 
weights. At lower exposure levels, these same phthalates 
typically cause less severe, yet statistically significant shorter 
male AGD, whereas other adverse effects on reproductive 
organs or systemic toxicity are less prevalent. Hence, a short 
AGD is often the most prevalent adverse effect observed at 
the lowest dose, supporting the use of AGD as a sensitive 
biomarker for these compounds.

Rat Leydig cells appear more sensitive to phthalate dis-
ruption than mouse and human Leydig cells (Svechnikov 
et al. 2016). For instance, the phthalate esters DEHP, MEHP, 
and DBP reportedly elevate testosterone levels in mice at 
early developmental stages, but suppress at late gesta-
tion, whereas no effects are observed in human fetal testis 
explants, with or without luteinizing hormone (LH) stimula-
tion. Yet, in cultured mouse Leydig cells, MEHP can both 
inhibit and stimulate steroidogenesis depending on cell line 
(Svechnikov et al. 2016). These observations indicate that 
at least in some instances, disruption to testosterone output 
is not simply caused by direct disruption of steroidogenesis, 
or Leydig cells, but likely also includes endocrine signaling 
networks such as pituitary hormones. The implication of 
these discrepancies for using AGD as a biomarker for anti-
androgenic effects remains uncertain. The best argument 
would be that since the rat seems to be the most sensitive 
model, it has the highest potential for safeguarding humans 
against detrimental effects in the wake of intrauterine expo-
sures. However, more detailed knowledge about molecular 
events that are both similar and different between species is 
needed to devise the best test strategies for the future. The 
human relevance of rodent AGD data could then potentially 
be confirmed by testing chemicals in human-based cell and 
tissue systems.

AGD in animal toxicity studies: miscellaneous 
compounds

As summarized in Table 2, various substances from diverse 
chemical classes can affect the AGD in rat offspring. These 
include compounds with a clear anti-androgenic mode of 
action that cause even more severe effects on AGD than the 
potent anti-androgenic phthalates.

Prenatal exposure to high doses of certain AR antago-
nists completely feminizes the male pup AGD to 50% that 

of control males. This is the case for the pesticide procy-
midone, vinclozolin, and the non-steroidal prostate cancer 
drug flutamide (Christiansen et al. 2008; Hass et al. 2007; 
Ostby et al. 1999; Parks et al. 2000). After exposure to these 
compounds, the male offspring also displays an increased 
rate of nipple retention, high incidence of genital malforma-
tions, and severely reduced male reproductive organ weights 
(Bowman et al. 2003; Christiansen et al. 2008; Welsh et al. 
2008, 2010). As shown in Table 2, compounds such as the 
pesticide linuron, or the drugs finasteride and acetylsalicylic 
acid have also been shown to induce discernibly shorter male 
AGD (maximum response in the range of 31–38%). Yet, for 
the majority of the tested chemicals, the maximum effect on 
AGD in males ranges from 5 to 15% shorter than normal. 
Of note, for several of the listed compounds the relationship 
between chemical exposure and AGD does not always follow 
a continuous pattern, where reduction in the AGD index is 
proportional to exposure levels, or concomitant reproductive 
abnormalities.

Fetal exposure to both the antimicrobial preservative 
butyl paraben (Boberg et al. 2016; Zhang et al. 2014) and the 
industrial plasticizer bisphenol A (Christiansen et al. 2014) 
has been shown to shorten the male AGD around 7–16% 
in the male offspring, albeit there are studies reporting no 
effects on AGD for both butyl paraben (Boberg et al. 2008) 
and bisphenol A (Ferguson et al. 2011; Howdeshell et al. 
2008; Takagi et al. 2004; Tinwell et al. 2002). In the cases 
where short AGD was observed with these compounds, clear 
effects on nipple retention or genital malformations were 
rarely seen. On the other hand, decreased sperm count or 
affected prostate development were observed, as were dis-
rupted mammary glands in female offspring (Boberg et al. 
2016; Hass et al. 2016; Mandrup et al. 2016). The intuitively 
appealing explanation for these discrepancies in phenotypic 
manifestations is that the latter compounds are considered 
mainly estrogenic. However, they also display weak anti-
androgenic potential in vitro (Chen et al. 2007; Reif et al. 
2010; Rosenmai et al. 2014; Satoh et al. 2005) and show 
effect in several in vitro toxicity assays for other mecha-
nisms of action according to Toxicity Forecast [ToxCast; 
a program developed by the US Environmental Protection 
Agency to predict hazards and prioritize toxicity testing of 
environmental chemicals (Dix et al. 2007)]. This leaves the 
question of whether this small effect on AGD is the result of 
a weak anti-androgenic or an estrogenic effect, or yet another 
mechanism of action.

Fetal exposure to the estrogenic compound ethinyl 
estradiol does not seem to affect AGD in male offspring 
(Ferguson et al. 2012; Howdeshell et al. 2008; Mandrup 
et al. 2013), which then argue against the observed effect 
on male AGD following exposure to butyl paraben or BPA 
being estrogenic. It appears more likely that there are some 
weaker anti-androgenic effects exerted by these compounds 
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that do not increase significantly in efficacy at increasing 
doses. Another explanation could be lent from observations 
that estrogenic compounds can reduce the ability of Ley-
dig cells to synthesize testosterone, as reviewed elsewhere 
(Svechnikov et al. 2010). A recent study where mice were 
exposed to diethylstilbestrol (DES) also resulted in a short 
AGD in male offspring, again hypothesized to be caused by 
reduced testosterone production (Stewart et al. 2018). This is 
in agreement with what has been observed in rats following 
exposure to high doses of estrogens, where AR expression is 
lost in all tissues that show ‘anti-androgenic’ effects, as well 
as a reduction in Leydig cell numbers (Williams et al. 2001). 
Nevertheless, more mechanistic insight is required to fully 
explain how estrogenic compounds give rise to seemingly 
anti-androgenic effects.

Another group of chemicals that can elicit effects on 
reproductive development, including AGD, is the azole 
fungicides. They are used by both the medical and agricul-
tural industries for their anti-fungal properties. They can, 
however, provoke side effects in humans and are known to 
primarily interfere with CYP-family enzymes (Ashley et al. 
2006), but also nuclear receptors (Dreisig et al. 2013). As 
shown in Table 2, there are six azoles that in some stud-
ies have been shown to affect the AGD in rats: the drug 
ketoconazole, and the pesticides epoxiconazole, myclobuta-
nil, prochloraz, propiconazole, and tebuconazole. At tested 
doses, they do not cause large changes to AGD, but strik-
ingly, many of them cause longer rather than shorter AGD in 
male offspring. This is not the case for ketoconazole, how-
ever, where fetal exposure to 50 mg/kg resulted in around 
8–11% shorter male AGD (Taxvig et al. 2008). Notably, a 
contradictory study has reported no effect on AGD after 
exposure to ketoconazole at a similarly high dose (Wolf 
et al. 1999).

Prochloraz is an imidazole fungicide that can cause vari-
ous adverse effects in rat fetuses at high doses. Regarding 
reproductive effects, prochloraz exposure can induce nipple 
retention in male offspring (Christiansen et al. 2009; Ving-
gaard et al. 2005), whereas effects on AGD are conflicting 
between studies. If taking birth-weight into account, there 
were no significant effects on male AGD at doses similar to 
those causing nipple retention (25–150 mg/kg) (Christian-
sen et al. 2009; Melching-Kollmuss et al. 2017; Noriega 
et al. 2005; Vinggaard et al. 2005). Another study reported 
around 10% shorter male AGD after fetal exposure to high 
doses of prochloraz concomitant with nipple retention at 
the same doses (Laier et al. 2006). Screening studies have 
shown that prochloraz can provoke multiple mechanisms 
of action in vitro, as it antagonizes the androgen and the 
estrogen receptor, agonizes the Ah receptor, and inhibits aro-
matase activity (Vinggaard et al. 2006). Whether or not all 
these mechanism are activated in vivo, and what effects this 

would have on the developing fetus, remains to be properly 
clarified.

Exposure to myclobutanil, propioconazole, and tebucona-
zole can all seemingly induce longer AGD in male offspring, 
whereas with epoxiconazole, the picture is less clear with 
only weak indications that it may affect AGD (Goetz et al. 
2007; Hass et al. 2012; Taxvig et al. 2007). By what mecha-
nisms this occur remains unclear. Taken together, however, 
the azole fungicides seem to elicit different effects on the 
developing fetus, resulting in effect outcomes not readily 
explained due to our limited knowledge about mechanisms 
and modalities, which should be a focus area for future 
studies.

Note on mild analgesics and their endocrine 
disrupting properties

Non-steroidal anti-inflammatory drugs (NSAIDs) and par-
acetamol/acetaminophen represent a group of mild analge-
sics suggested to have endocrine disrupting properties. As 
recently reviewed (Kristensen et al. 2016), their use across 
the world has risen dramatically in recent years. Herein, we 
will not discuss in great detail the potential endocrine effects 
from the analgesics, but highlight studies where effects on 
AGD have been reported.

Fetal exposure to therapeutically relevant doses of par-
acetamol can result in 5–10% reduction in male rat AGDi 
(Kristensen et al. 2011). Another study using a similar high 
dose and exposure regimen failed to show a statistically sig-
nificant change to male AGDi, but here, significant effects 
on nipple retention and reduction in LABC muscle com-
plex weight were observed (Axelstad et al. 2014). Effects on 
AGD have also been observed in mice after in utero expo-
sure to mild analgesics, and already in 1986, it was shown 
that male fetuses exposed to aspirin or indomethacin could 
present with shorter than normal AGD (Gupta and Goldman 
1986). More recently, exposure to both aniline (which is 
metabolized to paracetamol in vivo) and paracetamol during 
pregnancy resulted in short AGD in male offspring (Holm 
et al. 2015). Although these studies strongly suggest that the 
mild analgesics act as anti-androgenic agents in the male 
fetuses, there are still not enough mechanistic studies avail-
able that convincingly support this conclusion.

Is AGD a useful biomarker for female reproduction?

In females, a longer AGD is considered a masculiniza-
tion effect, something that would result from the presence 
of excess androgen levels or ectopic activation of AR. For 
example, longer than normal female AGD is associated with 
elevated testosterone levels (Mira-Escolano et al. 2014), 
exemplified by daughters born of women with polycystic 
ovarian syndrome (Barrett et al. 2018; Wu et al. 2017). 
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These clinical observations are further supported by rat stud-
ies (Hotchkiss et al. 2007; Ostby and Gray 2004; Ramezani 
Tehrani et al. 2014; Wolf et al. 2002), and are in line with 
what we know about how androgens masculinize fetal tis-
sues. However, other mechanisms have also been proposed 
to underpin masculinization of female fetuses, for instance, 
ectopic activation of the progesterone receptor (PR).

The fungicide vinclozolin has been suggested to mascu-
linize mouse female fetuses by activation of the PR, further 
supported by the fact that the synthetic progesterone medroxy-
progesterone acetate also masculinizes the female offspring 
(Buckley et al. 2006). Notably, fetal exposure in rats had no 
significant effect on female AGD (Hass et al. 2007). Nev-
ertheless, although synthetic progesterones can activate the 
PR, many synthetic progestins such as medroxyprogesterone 
also targets other nuclear receptors and can give rise to many 
off-target effects (Kuhl 2005). For instance, progestins were 
widely used to prevent miscarriage in the 1950s and 60s, but 
proved to masculinize the external genitalia of the female off-
spring (Money and Mathews 1982), and initially referred to 
as progestin-induced hermaphroditism (Wilkins et al. 1958). 
Even if these effects seem to be driven by PR-mediated signal-
ing, it cannot be excluded that androgenic modes of action are 
involved. Not only are several progestins, including medroxy-
progesterone, androgenic (Kuhl 2005), but androgen levels 
can seemingly also be elevated by high levels of progester-
one, ultimately giving rise to androgenic effects (Auchus and 
Chang 2010).

Female rats exposed to the azole fungicide prochloraz 
present with longer AGD at birth, concomitant with elevated 
progesterone levels (Laier et al. 2006; Melching-Kollmuss 
et al. 2017). Prochloraz can induce progesterone synthesis 
in vitro by CYP17 inhibition at concentrations above 10 nM 
(Dreisig et al. 2013), a mechanism confirmed in vivo, where 
fetal plasma concentrations were measured at 24 nM following 
maternal exposure to 150 mg/kg bw/day of prochloraz (Laier 
et al. 2006). Although this does not prove that progesterone 
was acting via the PR to induce masculinization, androgen 
levels were not elevated in the same animals and hence suggest 
that this is an alternative mechanism, since azoles themselves 
do not seem to activate the AR. A definitive answer remains 
elusive, however, and much work remains to be done on azoles 
to characterize their sometimes perplexing modes of action.

Estrogens can seemingly also cause longer AGD in 
females. Although fetal exposure to ethinyl estradiol does 
not affect male AGD in rats, female offspring can present 
with longer AGD following exposure to supra-physiologi-
cally doses (Casanova et al. 1999; Delclos et al. 2009; Man-
drup et al. 2013; NTP 2010; Ryan et al. 2010; Sawaki et al. 
2003). Immediately, this effect seems counter-intuitive; how-
ever, very high doses of steroidal estrogens can agonize the 
AR (Vinggaard et al. 1999), which suggests that the effects 
are driven by androgen action rather than being estrogenic.

There are also examples, where female AGD is shorter 
than normal following in utero exposure, observations that 
evoke more questions than answers. The types of compounds 
capable of shortening female AGD in rodent are also varia-
ble and include bisphenol A (Christiansen et al. 2014), butyl 
paraben (Boberg et al. 2016), ketoconazole (Taxvig et al. 
2008), paracetamol (Holm et al. 2016), as well as di-n-hexyl 
phthalate and dicyclohexyl phthalate (Aydoğan Ahbab and 
Barlas 2015). These studies are not covered in detail herein, 
and thus not presented with proper weight of evidence as yet 
any plausible mechanisms- or modes of action are lacking. It 
would, however, be of great interest to design studies specifi-
cally to answer such questions, as they may reveal insights 
of value to perineal development more broadly.

AGD measurements in regulatory toxicology

AGD in chemical risk assessment

Within a regulatory context, AGD measurements are manda-
tory to perform at either gestational days 20–21 or postnatal 
days 0–4 in several OECD test guidelines used to test for 
developmental and reproductive toxicity in chemical risk 
assessment. These guidelines include the extended one 
generation study (TG 443), the two reproductive toxicity 
screening studies (TG 421/422) and the newly updated TG 
414 Developmental toxicity study (OECD 2012, 2016a, b, 
2018). The OECD guidance documents (OECD GD 43 and 
GD 151), which guides the interpretation of these guide-
lines, states that “A statistically significant change in AGD 
that cannot be explained by the size of the animal indicates 
effects of the exposure and should be considered in setting 
the NOAEL (No Observed Adverse Effect Level)” (OECD 
2008, 2013). This means that, when a statistically significant 
shorter AGD in male rat offspring is considered the critical 
effect, a NOAEL can be based on this information and used 
as the point of departure for setting safe exposure levels for 
humans. Since AGD measurements will be included as an 
endpoint when performing almost all future regulatory stud-
ies investigating developmental and reproductive toxicity, 
it will improve on the sensitivity for identifying endocrine 
disruptors and developmental toxicants in mammals. In 
addition, this inclusion will generate much data, which will 
contribute to more thorough evaluations of substances and 
information pertaining to their modes of action.

Other morphological biomarkers to support AGD

Nipples and mammary glands originate from bipotential 
structures that develop differentially between the sexes in 
response to specific molecular cues. In humans, both sexes 
are born with a pair of nipples and breast development in 



265Archives of Toxicology (2019) 93:253–272 

1 3

girls is only initiated during puberty. In rats, the situation 
is somewhat different, as only the females retain their nip-
ples; postnatal males only possess rudimentary structures 
(Kratochwil 1971).

In the developing male rodent, the presence of DHT 
causes regression, or apoptosis of the nipple anlagen (Imper-
ato-McGinley et al. 1986). This process is blocked by fetal 
exposure to anti-androgens, and these male offspring subse-
quently display nipples similarly to their female littermates. 
Therefore, nipple retention in male pups is used alongside 
AGD as a morphometric marker of impaired androgen 
action. Although this morphological phenomenon does not 
occur in humans, it can, nevertheless, be used to predict 
anti-androgenic effects of chemicals. In other words, the fact 
that nipples are retained in exposed male rat offspring can 
be used to predict reproductive disorders caused by chemi-
cal exposures, even though nipples do not regress in human 
males. Whether AGD or nipple retention possess similar 
sensitivity, as was recently shown for an 18-chemical mix-
ture of anti-androgens (Conley et al. 2018), or if one of the 
endpoints is more sensitive than the other, seems to depend 
on what chemical is being tested. Therefore, inclusion of 
both AGD and nipple retention in reproductive toxicity 
studies, in a weight-of-evidence manner, can significantly 
improve on the assessment of potential EDCs (OECD 2015). 
Nipple retention is also mandatory to assess in three separate 
OECD test guidelines (TG 443, TG 421/422).

Conclusions and perspectives

AGD has emerged a useful biomarker to detect fetal andro-
gen insufficiency and is now applied in regulatory testing 
strategies for detecting endocrine disrupting effects. Its util-
ity in a clinical setting is less defined, but it has received 
more traction in the last few years. It is our conviction that it 
will remain a standard retrospective biomarker in rodent tox-
icity studies and risk assessment. In humans, it will increas-
ingly serve as a prospective biomarker, where a shorter than 
normal AGD in male offspring will be a warning flag for 
future reproductive complications, not least fertility issues. 
For this to fully eventuate, however, much more research 
focusing on answering many knowledge gaps is required. 
To this end, we would emphasize four areas that we believe 
should be focused on in the near future.

First, more efforts should be channelled into character-
izing the morphoregulatory pathways of perineal develop-
ment. Although the current dogma stipulates that the length 
of the AGD is controlled by the level of androgen action 
during the ‘masculinization programming window’, other 
regulatory pathways also seem to play a role, at the very 
least as effect-outcome modifiers.

Second, there is a need to better define the relationship 
between anti-androgenic effects and the length of the male 
AGD, both in rodents and humans. Should we rely purely 
on ‘statistically significant’ differences, or should a mini-
mum percentage shorter than control mean be defined? And 
more importantly, can the magnitude of shortening be used 
to define magnitude of lost androgen action or future risk of 
contracting reproductive disease?

Third, to what extent can AGD measurements be used 
as a stand-alone biomarker to detect anti-androgenic effects 
in toxicity studies, and where do we need to supplement 
with additional effect measures? In a weight-of-evidence 
approach—which is currently recommended—what other 
measurements should be included, and when? For these 
evaluations, there should also be stronger emphasis on effect 
doses and to what extend supra-high doses reliably recapitu-
lates what occurs at more human relevant doses. This latter 
point seems more important in view of chemicals that do 
not result in clear monotonic dose–response relationships.

Fourth, can AGD measurements be used as a biomarker 
in females? Certain perturbations can affect female AGD in 
either direction, but what does a long or short AGD really 
measure in female offspring? And is it linked to adverse 
health effects later in life? Concerning a longer than normal 
AGD, it would most often, if not always, be a sign of mascu-
linization effects comparable to those observed when female 
fetuses receives too much androgens. With a shorter AGD, 
however, the jury is still out.
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