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We investigate higher-order plasmons in graphene nanoribbons, and we present how electronic edge states
and wave-function ne structure in uence the graphene plasmons. Based on nearest-neighbor tight-binding
calculations, we nd that a standing-wave model based on nonlocal bulk plasmon dispersion is surprisingly
accurate for armchair ribbons of widths even down to a few nanometers, and we determine the corresponding
phase shift upon edge re ection and an effective ribbon width. Wider zigzag ribbons exhibit a similar phase shift,
whereas the standing-wave model describes few-nanometer zigzag ribbons less satisfactorily, to a large extent
because of their edge states. We directly con rm that also the larger broadening of plasmons for zigzag ribbons
is due to their edge states. Furthermore, we report a prominent ne structure in the induced charges of the ribbon
plasmons, which for armchair ribbons follows the electronic wave-function oscillations induced by intervalley
coupling. Interestingly, the wave-function ne structure is also found in our analogous density-functional theory
calculations, and both these and tight-binding numerical calculations are explained quite well with analytical
Dirac theory for graphene ribbons.

DOI: 10.1103/PhysRevB.99.045411

I. INTRODUCTION theories, in Refs.1,28-30], where conductivity is handled

Over the past few years, numerous studies have becds @ local material parameter. The possible effects of the

conducted on graphene one-dimensional (1D) structures, emPeC! € atomic con guration at the edge cannot be studied

phasizing both single-particle excitations and collective plasln such an analysis. In contrast, here we study edge re ections

monic excitations]-8]. Ribbons are prime examples of such W'th'n t|ght-b|nd|ng (TB) calculations for_ both _armchf';ur and
structures $-11], while plasmons can also be localized and zigzag ribbons (see Fig). We also consider zigzag nbbons_
guided along other 1D structure$2-14]. Principal motiva- where t_he edge states have been_ excluded \_Nhen calculating
tions for studying plasmons in graphene ribbons are the stro € optical response as deta|_led in our previous warg. [

con nement of the electromagnetic elds, long propagation | N latter allows us to study directly how graphene plasmons
lengths, as well as the convenient tunability through (electro@'€ affected by the localized electronic edge states of zigzag
static) doping 15]. ribbons. - _

The creation of nanoribbons has come a long way Furthermore, the atomistic nature of our calculations .al-
[16-22]. It is now possible to create ribbons with widths in |OWS us to study the ne structure of the plasmons by mapping
the 10-20 nm range, both with top-down processes, aIIowinéﬁe induced charges to individual atomic sites. The analysis
better scalability, and with bottom-up syntheses, yielding higHeveaIs short-range oscillations inherited from the underlying
atomic precision 43]. Together with methods for probing Wwave functions, predicted by Dirac theory and con rmed both
plasmons with high spatial resolutiof,7,24-26], this creates by TB and ourab initio density-functional theory (DFT)
possibilities to measure novel quantum effects in graphenealculations.
plasmonics. The structure of the paper is as follows: In Sét.we

We have previously elucidated the emergence of nonclasspresent our analysis of a standing-wave model and the ef-
cal behavior of the lowest-order plasmons in narrow graphengect of the atomic edge termination on the edge re ection
ribbons P7] arising from the quantized nature of the bands.properties of graphene plasmons. Secondly, in Béc.we
In this work, we analyze instead the higher-order modesrie y show our ndings regarding the localized edge states’
in order to study the impact of the precise atomic con g- ability to introduce additional broadening of the plasmonic
uration on the plasmon re ection properties of the ribbonpeaks. Lastly, we dive into the spatial distributions of the
edges. The phase shift upon edge re ections of plasmonplasmons and the differences in the induced ne structure in
in graphene has previously only been treated in continuun®ec.V.
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FIG. 2. From the dielectric matrix, the plasmon modes can be
found as peaks in the loss function (top panel) where the dipole
plasmon stands out, or as the zeros of the real part ek shown

FIG. 1. Azigzag (left) and an armchair (right) ribbon with the i, the Jower panel. The data shown are for a 6 nm zigzag ribbon with
axis used in the following being indicated. The induced charges _ - g4 ev.

across the ribbon for dipolar and higher-order plasmons are illus-

trated in red (negative charges) and blue (positive). The ne structure, o .
presented in Se&/ B has been averaged out. site (implicitly at wave vectok). As a shorthand notation,

we have used,m= S  for the energy difference and
likewisef o = fn S f o, for the difference in the Fermi lling
IIl. MODELS AND METHODS factors. The phenomenological loss paraméteris set to
A. Tight-binding model 1.6 meV as in Ref.10]. The width of the supercell in the
eriodic direction is labeleld. By excluding the edge states in
he evaluation of the response function, their contribution can
be assessed by comparing with the full expression.
H = St(ai'bj + H.c.), Q) The Coulomb interaction is included in real space using
i a t of the distance-dependent values for the correct Hartree

. : . . . interaction between twp, states B4]. The spatial extent of
where the sum is over pairs of neighboring sites, anctied . ;

. o the p, orbitals is taken from tabulated values0]. Charge
b creation (annihilation) operators add (remove) an electron

: . . neutrality ensures that the produwt © can be properly
on theA or B sublattice, respectively8lll. For the hopplng converged, despite the long-range behavior of the Coulomb
parametett we use the value of 2.8 eV, rst determined by

Ref. [32]. interaction L0,27].

The eigenstates are calculated on a dekgmint grid

with 5000 points in the one-dimensional Brillouin zone and C. Quantum plasmons

used for calculating the optical response as outlined below. The dielectric function ( ) can be written in a spectral

In ribbons with zigzag edges (left ribbon in Fig) where representation of its eigenvalues and left and right eigenvec-

localized edge states occur, we can classify the eigenstates@ss as j ( )=, n( ) ni( ) nj ( ), where the zeros of

either bulklike or edgelike using an energy cutoff derived fromthe real parts of ,( ) indicate plasmonic modes, the right

the Dirac model as presented in our recent work (R&f])[  eigenvector ,, is the induced eld, and the left eigenvector

This will allow us to directly quantify the effect of the edge |, is the induced charges of the plasm@a][ In Fig. 2 the

states on the energies and re ection properties of the graphentimerically calculated eigenvalues for a 6-nm-wide ribbon

plasmons. with zigzag termination and a Fermi energy ofi®&V are

shown below the panel showing the energy-loss function, the

B. Response function latter de ned asSIm( >1). The crossings of zero by the real

part of the eigenvalues are indicated with red circles. The rst

ranv(;lgnﬁ)lﬁ;ge ;S[?r(?xe::wc;cliofsﬁglgzi f]%rllzov(\)/irgthclr?ethseametwo zeros of Re[,] clearly correspond to peaks in the loss
methodology as Refs1(,27], i.e., the noninteraction density- spectra. Higher-order modes are more damped and hard to

density response function is calculated in the site basi%ggzt:fz;rgghtzezel?gz sfp;gir(ur;}, but they can still be easily

through direct insertion of the eigenstates38][

The band structure of graphene is well described by
nearest-neighbor TB model with the Hamiltonian

o( )= %zﬂ Yk for ainaﬁn%ainair? C© lll. PLASMONS IN A STANDING-WAVE MODEL
om + AC+1) It is well known that plasmons re ect with almost no loss
from which the dielectric function can be determined as on graphene edge86,37]. Thus, as a method of understand-
= &y, 0 ®) ing the behavior of plasmons in graphene nanoribbons, we
o e will adopt a Fabry-Pérot standing-wave model. As we only
whereV is the Coulomb interaction and we have used theconsider propagation in the direction, the picture is that
usual Einstein summation convention. Tihie are atomic site  the plasmon moves across the ribbon according to a certain
indices, whilen andm label the eigenmodes at wave vector dispersion relation, reaches an edge, and re ects back with
k. Thus,a;, is the value of thenth wave function on théth an additional phase change from the re ection. The allowed

045411-2



EDGE-DEPENDENT REFLECTION AND INHERITED FINE ... PHYSICAL REVIEW B9, 045411 (2019)

Armchair Zigzag Zigzag w/o edges
20 A b 5 T 2
/

E
< 157 o 1 1
L
3 101 ] ]
+
2 X
3 5- 1 1 2
<

o TS ) P

01 2345467 8910 0123454678 910 012 3 456 7 8 910
e index Mode index Mode index
Width [nm]

2 34 5 6 7 8 91011 12 13 14
FIG. 3. Using a linear dispersion relation and tting the Fabry-Pérot model to the modeswith for AC, ZZ, and ZZ without edge
states. The insets show the energy as a function of mode number for all the ribbons calculated. All calculations arefdreV.

modes are those where this process gives rise to constructigeay areas in Fig3. The reason is that the curves shown in
interference as illustrated in Fid. The condition for this to  the insets start deviating from the linear behavior for these
occur becomes lower mode numbers. The resulting ts are shown in Fg.
ns$1) $ arlld.the corre;ponding values are given in Tabréh.e linear
Wt w (4) tis indeed quite good for the higher-order modes in all cases.
Without edge-state contributions there is a slight upward
wheren is the integer mode index starting from= 1, and  bending of the lower-order modes that gets more prominent
is the re ection phase change. Furthermore, we introducegor the wider ribbons. When comparing ZZ with and without
an effective widthWer W + W that takes into account edges, we can tell that the edge states alter the behavior of
that the plasmon may not re ect at exactly the positions ofthe low-index modes, while the higher-order modes are still
the outermost rows of atoms that de ne the geometric widthinear. The extracted plasmon velocities differ b0% and
W. The notion of effective sizes is also found in the area ofare all close to the Fermi velocityy  0.91x 10° m <L,
optical antennas3f]. A positive W describes a plasmon  As seen in Tablé, in this model AC edges have a re ection
that effectively spills out of the ribbon, while a negative phase of approximatel$g and a small width correction
value corresponds to a plasmon that is effectively more tightly w 0.4 nm. The zigzag ribbons show a very different
con ned than by the geometric width. As such, this is quitebehavior with a larger W of 1.44 nm and a considerable
analogous to descriptions of surface phenomena based @mase shift 052.67 . Removing the edge states brings both
Feibelman parameter8g,40]. and W closer to the results found for armchair ribbons.
We have performed TB calculations for both armchair and  Although the linear ts are quite good, the model only
zigzag ribbons and also considered zigzag ribbons where thgorks for the higher-order modes, and the more-than-2
edge states have been excluded when calculating the opticghase shift for zigzag ribbons is hard to interpret. We therefore
response, as detailed in our previous wa@®[This allows us  conclude that a better model is needed to obtain trustworthy
to understand the effects, if any, of the atomic edge terminaquantitative values for and W. This model will be pre-
tion and the localized edge states on the re ection propertiegsented in the following.
of the graphene plasmons.

20S 1) = 2qWep + 2 q=

B. Nonlocal dispersion and refRection phase shift

Building on the standing-wave model, we suggest that,
while the plasmon is not at the edges, it disperses in the
same manner as it would in an in nite sheet of graphene.

A. Linear mode dependence of higher-order modes

By nding the zeros of the real part of the eigenvalues
of the dielectric matrix, as illustrated in the bottom panel
of Fig. 2, we can nd the plasmon energies as a function
of mode index. We depict these data in the insets of Big. - . . .
By inspection one canpsee that the plasmon energies dgpend TABLE I. Fitting pare}meters as determined from the linear dis-
more or less linearly on the mode number for the higher-ordePerSIon model used in Fig.

modes. Given this linear dependence, it seems that the higher- Zigzag wio
order plasmons on graphene ribbons behave analogously to Armchair Zigzag

light in a cavity between two mirrors. Assuming a linear edge states
dispersion as , = V0, Wherev, is a constant plasmon W (nm) 038 + 005 144 + 0.04 072 + 002
velocity, we therefore expect, W to be constant across 8106+ 005 8267+ 005 $153+ 0.03

different widths. To t our nondispersive model, we do not y_ (1¢°ns) 102 + 0.02 088 + 0.00 090 + 0.00
use the lowest-order modes with 3, as indicated by the
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FIG. 4. The re ection phase and the width corrections are found by optimizing to the nonlocal plasmon dispersion of in nite graphene.
The Fabry-Pérot model with this dispersion works very well for the armchair ribbons and for the zigzag ribbons when excluding the edge
states.

Classically, that corresponds to aj dispersion, asisthe case =~ The same nonlocal-dispersion model does not agree as
for the two-dimensional (2D) electron ga&l[42]. However,  accurately with the analogous tight-binding results for zigzag
we expect nonlocality to play an important role in these smalkibbons, as can be seen from the increased scatter of the points
structures, and we thus use the dispersion relation found biyp the second panel of Fig. In particular, the behavior of the
using the nonlocal dielectric function for in nite graphene aslow-q plasmons in the TB calculations is not captured that
calculated in Refs.41,43]. With this approach, an explicit well. As seen in the rightmost panel, removing the edge states
g-dependence is included in the quantum-mechanical condudoes improve the agreement, indicating that these states are
tivity altering the plasmon dispersion for larger valuesgof responsible for a great part of the difference with armchair
As can be seen from Figl, the included nonlocality makes ribbons. We emphasize that the AC ribbons are well described
the dispersion almost linear at larggand thus explains why by aS0.75 re ection phase in combination with the bulk
the linear model worked for high mode indices. plasmon dispersion down to very small sizes of only a few
We determine and W by tting to the nonlocal disper- nanometers. However, because of the less convincing t for
sion curve, getting the results shown in Hgyvith parameters the ZZ geometry, we will not take the resulting tting param-
shown in Tablell. The model applies very well for the eters atface value, and we perform instead an additional more
armchair ribbons, both for largey values where the disper- thorough analysis.
sion is linear, and for smalley where the dispersion curve
becomes atter. The resulting plasmon re ection phase for ) )
AC ribbons is found to be close $0.75 . The concomitant C. Width-dependent phase shift
width correction W S 0.3 nm corresponds approximately ~ To get further insight into the plasmons in ZZ ribbons,
to the width of two and a half atomic rows in the armchairwe optimize and W for each ribbon width individually.
con guration. The results depicted in Fig. show that there are only minor
An alternative de nition of the re ection phase (that dif- changes as a function of width for AC ribbons, which is to be
fers by ) has been used in Refsl,29,30]. However, after expected since one set of (width-independent) parameters did
converting to our de nition, these works report re ection very well previously. We distinguish between semimetallic
phases that are all very close &0.75 . This is the same (triangles) and semiconducting (circles) AC ribbons and nd
as was found in Ref.28], which uses the same de nition as that they behave slightly differently for the small widths, as we
ours. Because of this remarkable agreement in numericallijave also examined in another context previougly].[The
determined re ection phases, it is worth mentioning at thisgraphs for the two types of AC ribbons will merge for wider
stage that as far as we know there is no analytical theoryibbons (not shown) as the band gap for the semiconducting
that predicts an exact re ection phase $8/ 4. However, ribbons closes.
in Ref. [28] the authors do present an analytical model that  For ZZ ribbons, a standing-wave model with nonlocal bulk
comes quite close and predicts S 0.64 . dispersion results in much greater variance in the re ection
phase and the width correction between the different ribbon
widths. In the zoomed view in the bottom middle panel of
Fig.5, we can see that only for the two widest3 nm ribbons
(yellow and light green dots) do the TB calculations follow
the nonlocal dispersion model well. So it seems that our bulk-

TABLE Il. Fitting parameters as determined from the nonlocal
dispersion model used in Fid.

Zigzag w/o ! e -
Armchair Zigzag dispersion-in-between-re ections model does not apply to the
edge states  narrower ZZ ribbons that we considered, while for AC ribbons
W(m) $030+ 005 031+ 006 032+ 003 Iitdoes forallsizes. _ _
/ 3079+ 003 S$133+ 005 S0.89+ 002 Let us give an explanation of why this would be the case.

The electron density for an AC ribbon is virtually constant

045411-4



EDGE-DEPENDENT REFLECTION AND INHERITED FINE ...

PHYSICAL REVIEW B9, 045411 (2019)

Armchair Zigzag Zigzag w/o edges
-0.5 7y -0.5
_;:.__;;,r! ________________ PR ——
- | _ _.’.;.'%—.
£ -10 1.0
_1'5 1 T T T _1'5 A T T T
—_ 1 1
1S
SECE 0 0 -
2
3
-1 ; ; ; -1 ; ; ; -1 ; ; ;
5 10 15 5 10 15 5 10 15
Width [nm] Width [nm] Width [nm]
2.0 2.0 2.0
T 151 1.5 - 1.5 -
L
3 1.0 1.0 - 1.0 |
< | # )o/. | 0
0.5 0.5 1 _110' 0.5 - | °
0.0 . ; : 0.0 . 7 — 0.0 . T T
0 1 2 3 0 1 2 3 0 1 2 3
q[nm™1] g [nm™1] g [nm™1]

FIG. 5. Optimizing and W for one width at a time showing that while the AC results are fairly constant, ZZ corrections seem to
converge only for wider ribbons. The two types of points in the AC plots distinguish between semimetallic (triangles) and semiconducting
(circles) ribbons. The dashed line in the top plots indic&8<5. Colors in the bottom plots are the same as in Big.

across the entire width of the ribbon; see Fég.Hence, it The ZZ width correction nds its stable point close to
is a fair assumption that the plasmon experiences a fairl$50.3 nm exactly as the result found for AC ribbons. Only
constant bulklike environment while propagating in betweenoptimizing for the widest ribbon where the model is applicable
the ribbon edges. Turning our attention to the electron densityields =S 0.77 and the t shown in Fig7.

in ZZ ribbons, the localized edge states give rise to increased To conclude, a constant phase shift of the same size of
electron density (see the second panel of Bjgand therefore  S0.75 as the ones found in continuum theories works well
an effectively different Fermi energy altering the dispersion offor both AC and ZZ ribbons, although the picture starts to
the plasmons in this region. The effective phase change wikhange for ZZ ribbons narrower than 15 nm. At these sizes,
thus be the sum of the re ection at the edge and any phasan atomistic model is needed to properly account for the edge
picked up during propagation in the edge region. With widereffects. We must stress that these ndings depend on including
ribbons, the size of the non-bulk-like region relative to thethe width correction, W, not previously considered in earlier
plasmon wavelength decreases and the phase shift convergesrk. Leaving it out yields both different phases and in
close t0S0.75 for ZZ ribbons as well. By comparing to the general worse ts. Naturally, since W is on the order of
results from excluding edge states, we see that both the phaaagstroms, and the plasmon wavelength scales with the ribbon
and the W vary much less and that the t hardly changes width, its importance will disappear for wide enough ribbons.
compared to the width-independent model. The latter was also

the case for the AC ribbons.

Armchair || Zigzag ||

pos

5% -

0% -

Density change
hw [eV]

oo

DEUTDREDLEXIC L6009

012 3 456 7 012 3 456 7
Position across ribbon [nm]  Position across ribbon [nm]

g [nm~1]

FIG. 6. The difference in the ground-state density for a 7-nm-
wide doped graphene ribbon, shown relative to the average density FIG. 7. Optimizing the standing-wave model to the 15 nm zigzag
at the center half. While the density in AC ribbons is almost constantibbon, the widest ribbon considered here. The model works well for
everywhere, the electronic edge states in ZZ ribbons alter the picturthis width, but less so for smaller ribbons, in contrast to what was
considerably. Results from TB witly = 0.4 eV. found for AC ribbons. Colors are the same as in Big.
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0,30 Peak widths resulting Hamiltonian has the form
- ® Zigzag H = hv, ky + ki
3 0.25 4 o O ZZ, No edgestates F( z XX 0 . y y)
= ° Armchair 0 ke S iky 0 0
£ 0.20 A .
E ° -y ki + iky 0 0 0
Rl I oo 0 0 Ske Siky
§ 0.101 ° 0 0 Ske+iky 0
B | °
£ 0.05 e . .o . (5)
[} . . . .
0.00 Cl 2 Z < ; . ) : (é) ;’— where ; and ; are all Pauli spin-matrices with the former

Ribbon width [nm] belonging to valley space and the latter to &I8 sublattice

, o space.
FIG. 8. Width of plasmon peaks when including (full, blue  The armchair edge termination consists of alternafing

points) and excluding (open, blue points) the edge states from thgngB -|attice sites, and the boundary conditions must thus mix
calculation. Results for armchair ribbons are shown in orange. Thene two valleys 31]

edge states contribute with a broadening that increases for smaller
widths. ¢ = 0.8eV. 0= A (x=0)+ ~B (x=0),

0= kW AB (y = W)+ eSiKW  A/B (x=W), (6)

IV. EDGE-STATE INDUCED BROADENING whereK = 4/ 3 3ay andSK are the positions of th&

In addition to the dependence of the re ection propertiesvalleys in momentum space, aaglis the interatomic distance
on the occurrence of localized edge states, we also nd thah the graphene lattice. These conditions lead to eigenstates
the plasmonic peaks are much wider in ZZ ribbons than irthat can be written as a four-vector of plane wavkg,[€*.
AC ribbons of comparable widths; see F&y A similar result ~ We have previously found?[7] that the allowed values di,
has previously been reported in Ref0], and the hypothesis given in Ref. 9] can be written in the form
was put forward that the'edge states give risg to the additipnal [3n S 2(N + 1)]
broadening. Here we will test the hypothesis: by excluding n= W , @)
the edge states from the calculation of the optical response, . ] ) }
we can directly determine the in uence of said states on thdelating the wavelength to three times th_e width of the ribbon.
broadening. Here, N is the number_of atom rows in the unit cell and
The result can be seen in Fig,. where the blue (orange) N Z-_The corresponding eigenenergies are given as
dots are the plasmon peak widths for ZZ (AC) ribbons withshve Kz + k3.

r = 0.8 eV, and the open symbols are ZZ without edge The mixing of the valleys through the boundary conditions
states. It con rms unequivocally the hypothesis that the largegi result in an oscillation of the wave functiorb(] with
broadening for ZZ ribbons is indeed due to the presence QR/aveIength 2K = 3a, 3/2, which corresponds exactly to
the edge states. It can be interpreted in this way that the edgg,ery third atom across the armchair ribbon. From this it
states constitute an additional decay channel for the plasmong,|jows that two neighboring atoms will usually have very
leading to more broadening, in an electron energy range thafifferent weights of the wave function. However, if we plot
would otherwise have a zero density of states. Indeed, this hage same electron densities for every third site, such that the
been explored analytically for disk resonataté]fand numer-  510ms 14, 7,... are connected, then we expect the change to
ically for triangular akes §5]. As edge states are common to pe rather smooth. This “ ne-structure” oscillation is readily
all graphene terminations, except the armchair edge48],  found in the TB results as shown in Figg.and 10 for a
it is reasonable to expect that this edge-induced plasmofo_aiom-wide armchair ribbon.
broadening will occur in most graphene nanostructures. To emphasize the fundamental nature of this oscillation,

we have also performed a DFT calculation of the same ribbon
V. INHERITED EINE STRUCTURE geometry, usir_lg a plane-wave l_)asis i [ Using a Bade_r_
OF PLASMONIC MODES charge ana!ysmSQ], we have prolected_the electron densmes
corresponding to the lowest unoccupied wave functions (of
In this section, we will present our ndings of the atomic- undoped graphene) onto the individual carbon atoms such that
scale ne structure of the plasmonic modes of nanoribbonswe can compare with the TB results. Taiginitio calculations
As the induced charges are built from electron-hole pairsshow very much the same ne-structure behavior as seen in
some structural properties of the underlying wave functionghe top rows of Figs9 and10.
will be inherited by the plasmons, as we show in the following.  These rapid electronic variations are inherited by the spa-
tial distributions of theplasmonsf AC graphene ribbons, as
we will see in the next section.
Returning to the values d&,, we can also nd the long-
It is possible to get analytical insight into the shape ofwavelength oscillation in both the DFT and TB results. As
the wave functions from the Dirac model where the TBillustrated in Fig.9, by “unfolding” the wave function such
Hamiltonian is linearized around th¢ andK valleys. The that it covers the full 8/, we nd that the behavior exactly

A. Fine structure of wave functions
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Electron density Short-range oscillations Long-range oscillations

Bader charge

DFT analysis Connect every Unfold
third atom
123456
B
W w 3w

FIG. 9. Scheme for visualizing short- and long-range oscillations in the wave functions. Electron density (rst column) is mapped to
individual atoms, and every third atom is connected in the plot (middle column). Finally, the map is “unfolded” to reveal the oscillation
predicted from the Dirac model.

matches a wave with the shape deg(. It can be seen of either kind. For the zigzag ribbon, the density is shown
in Fig. 10 that this also works for the higher-lying wave on each of theA/B sublattices individually (gray lines) as
functions. Generally, we nd that for semiconducting AC well as the mean density found by averaging two interpolated
ribbons, the electron density from stateat sitei can be splines tted to the sublattice data (thick, black line). The
written as mean induced density, which is also sketched in Eighows
i o the behavior that one would expect in a classical model,
i = N si’[(x S [(i + N) mod 3)k], (8)  put there are a lot of ne-structure oscillations when looking
wherei is the site index as indicated in Fi@, x; is the x at the gtomic details. The cha_lrg_e uctuates between the two
coordinate of the site. arl is a normalization factor. sublattices, although the variation becomes smaller in the
’ higher-order modes and for the wider ribbons.
Charge densities in the armchair ribbons behave quali-
B. Fine structure of plasmons tatively different in that there is n&/B symmetry as for
As explained in Secll, the formalism for calculation of ZZ. As explained above, the valley-mixing imposed by the
the plasmons in TB gives direct access to the induced electrowrmchair boundary conditions leads to a periodic behavior
density of the plasmonic modes as well as the induced eldof the wave functions with a characteristic length scale cor-
through the eigenmodes of the dielectric matrix. In Fig. responding to every third atom across the ribbon. We plot
we show these densities for the four lowest-order modes ithe induced charges projected on the three subsets formed
two zigzag and armchair ribbons, one 4 nm and one 8 nnby this rule (full, dashed, and dotted gray lines) and nd a

DFT

i3
4
+

TB

DFT
unfolded

Electron density, |¢,(x)|?, arb. unit

B
unfolded

o>
<=
—=

0- ;\\ Q// /Q//
1 2 3
Number of unoccupied eigenstate at the K-point

FIG. 10. The electron densities of the three lowest unoccupied wave functiondawtdkey. The top row shows the DFT electron density
(gray) and the result of a Bader charge analysis. The second row shows the TB results with every third atom connected. The short-wavelen
oscillations of every third site are clearly visible in both TB and DFT. Unfolding the waves (as illustrated i9) F@yeals the long-range
oscillation in both TB and DFT in the bottom two rows. See details in the main text.
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Mode 1 2 3 4
.’i‘_m
c S —— ==NTs % \ TN \ '/
oco = ‘\\ == ~N— \ P
< OQ S~ N d &
\ \/ \/\ ~ /N s
N O\
£ , ,
E g 3 3
E

FIG. 11. Induced charges for the rst four plasmons for four different ribbons. The top view of the ribbons shows the charge on every
atomic site. The gray graphs [full, dashed, and (for AC) dotted] show the charges split betwéeartiB sublattices for the zigzag ribbon
and split between every third atom in the armchair ribbon. The thick line is the average of the thin lines and matches well with the classical
expectation. There is a clear ne structure in the distribution of the charges that seems to disappear at higher-order modes. The bottom grar
in each plot shows the induced eld. There is evidently considerable ne structure in the induced charges on the atomic scale.

smooth behavior for all of them. The ne structure is thus awidth in zigzag ribbons as wide as15nm. This behavior is
ngerprint of the periodicity of the underlying wave functions caused by the localized edge states that signi cantly alter the
that are involved in building up the plasmon. As in Fi), in  electron density close to the ribbon borders. Surprisingly, at
Fig. 11we show the average induced charges (black lines) anthe wider ribbon widths, both ribbon types are characterized
nd that they also match very well with the classical picture with the same width corrections and re ection phases. These
despite the large local differences. almost identical outcomes were not put in by hand and are
the result of independent curve tting. So we nd that for
wide enough ribbons whereW is negligible, the re ection
VI. DISCUSSION AND CONCLUSIONS phase 0f50.75 found in previous numerical studies within

Using TB, we identify numerous interesting effects in continuum models will also work for tight-binding models
graphene nanoribbon plasmons. By looking at the dispersiowith either edge termination, a phase that is not far from the
of higher-order plasmons, we nd edge-dependent re ectionvalue 0fS0.64 found analytically from a continuum model
properties of narrow ribbons. For armchair ribbons, the standin Ref. [28]. This convergence of our results for the re ection
ing waves are well described with a constant phase shift gphases of the two ribbon types is consistent with R&f], [
§0.75 and width correction W = S 0.3 nm at least down Wwhere it is shown, using tight-binding calculations, that in
to 2-nm-wide ribbons. The inclusion of W is necessary to wide ribbons the energies of the lowest-order plasmon of ZZ
adequately describe the system within the Fabry-Pérot modeind AC ribbons coincide.
and leaving it out would render th€0.75 phase change By looking at the induced charges, we nd a distinct ne-
inapplicable for the structures considered. In contrast to thsetructure oscillation between th&B sublattice for zigzag
result found for AC ribbons, the and W do depend on the ribbon and an every-third-atom dependence for the armchair
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ribbons. In armchair ribbons, the plasmonic ne-structure os-predict that this broadening will be present in most graphene
cillations come from similar oscillations in the wave functions structures.
that are a consequence of the valley mixing induced by the
boundary conditions. Using analytical results from the Dirac
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