Stacked class E resonant Very High Frequency converter for European mains power factor correction

Spliid, Frederik Monrad; Ammar, Ahmed Morsi; Knott, Arnold

Publication date:
2018

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Stacked class E resonant Very High Frequency converter for European mains power factor correction

Frederik Spliid, Ahmed Ammar & Arnold Knott
Technical University of Denmark, DTU Electrical Engineering, Electronics group

Elektrovej 325, 2nd floor, DK-2800 Kgs. Lyngby, Denmark

Introduction

• Great demand for compact PFCs in LED products.
• Driver size can be reduced by increasing switching frequency.
• This poster: design of 50 W resonant VHF AC/CD converter

Design

• Stacked configuration reduce voltage stresses and improve efficiency. [1]
• Class E inverter and class DE rectifier enables zero-voltage switching.

Simudiation performance

Fig. 1 Stacking configuration.

Fig. 2 Class E inverter stage with self-oscillating resonant gate drive

• GaN devices with low parasitic capacitance enable high switching frequency.
• Air-core inductors gives high Q magnetics at high frequencies.
• Self-resonant gate driver enables VHF switching [2].

Fig. 3 Left: V_{ds} (red) and 10x scaled V_{gs} (blue) of inverter switch
Right: Rectifier input voltage (red) and current (blue)

Fig. 4 Input voltage (red) and current (blue)

Output power 52.2 W
Efficiency 90.3 %
Power Factor 93 %
Input current THD 38 %

Tab. 2 Simulated converter performance

Tab. 1 Converter specifications

<table>
<thead>
<tr>
<th>Input voltage</th>
<th>230 V<sub>AC</sub> @ 50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>110 V<sub>DC</sub></td>
</tr>
<tr>
<td>Switching frequency</td>
<td>30-37 MHz</td>
</tr>
</tbody>
</table>

References

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731466