Stacked class E resonant Very High Frequency converter for European mains power factor correction

Spliid, Frederik Monrad; Ammar, Ahmed Morsi; Knott, Arnold

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Stacked class E resonant Very High Frequency converter for European mains power factor correction

Frederik Spliid, Ahmed Ammar & Arnold Knott
Technical University of Denmark, DTU Electrical Engineering, Electronics group
Elektrovej 325, 2nd floor, DK-2800 Kgs. Lyngby, Denmark

Introduction
• Great demand for compact PFCs in LED products.
• Driver size can be reduced by increasing switching frequency.
• This poster: design of 50 W resonant VHF AC/DC converter

Design
• Stacked configuration reduce voltage stresses and improve efficiency.
• Class E inverter and class DE rectifier enables zero-voltage switching.

Fig. 1 Stacking configuration.

- GaN devices with low parasitic capacitance enable high switching frequency.
- Air-core inductors gives high Q magnetics at high frequencies.
- Self-resonant gate driver enables VHF switching.

Fig. 2 Class E inverter stage with self-oscillating resonant gate drive

Simulation performance

Fig. 3 Left: \(V_{ds} \) (red) and 10x scaled \(V_{gs} \) (blue) of inverter switch
Right: Rectifier input voltage (red) and current (blue)

Fig. 4 Input voltage (red) and current (blue)

Output power	52.2 W
Efficiency | 90.3 % |
Power Factor | 93 % |
Input current THD | 38 % |

Tab. 2 Simulated converter performance

Conclusion
• Stacked topology reduce voltage stresses.
• GaN transistors and air-core inductors enable VHF operation
• Self-oscillating gate drive enables open-loop operation

References

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731466