Computational Fluid Dynamics of Choanoflagellate Filter-Feeding

Asadzadeh, Seyed Saeed; Walther, Jens Honore; Nielsen, Lasse Tor; Kørboe, Thomas; Dölger, Julia; Andersen, Anders Peter

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Choanoflagellates are unicellular aquatic organisms with a single flagellum that drives a feeding current through a funnel-shaped collar filter on which bacteria-sized prey are caught. Using computational fluid dynamics (CFD) we model the beating flagellum and the complex filter flow of the choanoflagellate *Diaphanoeca grandis*. Our CFD simulations based on the current understanding of the morphology underestimate the experimentally observed clearance rate by more than an order of magnitude: The beating flagellum is simply unable to draw enough water through the fine filter. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), and addition of a wide vane in our CFD model allows us to correctly predict the observed clearance rate.

Observed versus modelled feeding flow

(B) Average velocity field based on particle tracking. (C) The CFD velocity field in the xz plane is time averaged over the flagellar beat cycle, and the velocity vectors inside filter and chimney are omitted for clarity. The CFD model based on the standard description of morphology and flagellum predicts a feeding flow that is more than an order of magnitude weaker than the experimentally observed flow, and it fails for the observed clearance rate.

Morphology of Choanoflagellate *Diaphanoeca grandis*

We gratefully acknowledge funding from the Villum Foundation.

CFD model with flagellar vane

A flagellar vane is notoriously difficult to visualize, but sporadically observed in some species of the choanoflagellates. (A) The choanoflagellate *Monosiga brevicollis* (scale bar 2µm), and (F,G) the choanocyte of the sponge *Spongilla lacustris*. The vane spans the width of the collar. (scale bar 1µm) [1].

References

Acknowledgements

We gratefully acknowledge funding from the Villum Foundation.