Swarm Optical Bench Stability

Herceg, Matija; Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Floberghagen, Rune

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Swarm Optical Bench Stability

Matija Herceg1, Peter Siegbjørn Jørgensen1, John Leif Jørgensen1, Rune Floberghagen2

1DTU Space, Measurement & Instrumentation Systems, Technical University of Denmark, Copenhagen, Denmark. 2European Space Agency, Frascati, Rome, Italy

Poster number: EGU2018-14478

Introduction

Swarm mission constellation, launched into orbit on November 22, 2013, consists of three satellites that precisely measure magnetic signal of the Earth. Each of the three satellites is equipped with three μASC Camera Head Units (CHU) mounted on a common optical bench (OB), which has a purpose of transference of the precisely determined attitude from the star trackers to the vector magnetometer (VFM) measurements. Although pre-launch analyses were made to minimize thermal and mechanical instabilities of the OB, significant signal with thermal signature is discovered when comparing relative attitude between the three CHU’s. These misalignments between CHU’s, and consequently geomagnetic reference frame, are found to be correlated with the optical bench temperature variation.

In this paper, we investigate the propagation of thermal effects into the μASC attitude observations and demonstrate how thermally induced attitude variation can be predicted and corrected in the Swarm data processing. The results after applying thermal model significantly improves attitude determination which, after correction, meets the requirements of Swarm satellite mission. This study demonstrates the importance of the OB pre-launch analysis to ensure minimum thermal gradient on satellite optical system and therefore maximum attitude accuracy.

Swarm optical Bench

Swarm optical bench (OB) is an ultra-stable silicon carbide-carbon fiber compound structure installed on a deployable conical tube of square cross section. Its purpose is transference of the precisely determined attitude using star trackers to the magnetometer field components.

Observed thermo-elastic instabilities

The three CHU’s are placed on OB and arranged with the Inter Bore sight Angle (IBA) of around 90° from each other. Ideally, IBA is expected to be constant. However, IBA variation shows periodicity, which is correlated with temperatures measured on three Swarm satellites.

The fixed frame is defined as:

\[X_F = \frac{x_F}{r_F} X_F = \frac{y_F}{r_F} \]

\[Y_F = \frac{z_F}{r_F} \]

\[Z_F = \frac{x_F}{r_F} \]

Each rotation is described by:

\[R_1(a) = \begin{bmatrix} \cos(a) & \sin(a) & 0 \\ -\sin(a) & \cos(a) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[R_2(f) = \begin{bmatrix} \cos(f) & 0 & -\sin(f) \\ 0 & 1 & 0 \\ \sin(f) & 0 & \cos(f) \end{bmatrix} \]

\[R_3(y) = \begin{bmatrix} \cos(y) & \sin(y) & 0 \\ -\sin(y) & \cos(y) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Individual rotation angles:

\[a = a_1 + a_2 T_1 + a_3 (T_1 - T_2) + a_4 (T_2 - T_0) \]

\[b = b_1 + b_2 T_1 + b_3 (T_1 - T_2) + b_4 (T_2 - T_0) \]

\[c = c_1 + c_2 T_1 + c_3 (T_1 - T_2) + c_4 (T_2 - T_0) \]

Results

Discussion

The analysis and thermal model presented herein, shows that the origin of the IBA variation is thermal gradient driven, and fully recoverable by a simple thermal model. We present the model for correction of therimoelastic instabilities on Swarm satellites optical benches, which cause misalignments between the CHU’s relative orientation. The results after applying thermal corrections show decrease in RMS for all the Swarm satellites. Therefore, the technique presented here shows improvement in attitude determination which, after correction, meets the 2-arcsecond requirements of Swarm satellite mission.

Presented model is now being implemented in the Swarm data processing.

References

