Juno ASC observations of low light phenomena on the Jovian night side

Jørgensen, John Leif; Jørgensen, Finn E.; Merayo, José M.G.; Denver, Troelz; Benn, Mathias; Jørgensen, Peter Siegbjørn; Connerney, John E. P.; Oliversen, Ronald J.; Kotsiaros, Stavros; Bolton, Scott J.; Levin, Steven

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
P24B-04: Juno ASC observations of low light phenomena on the Jovian night side

Tuesday, 11 December 2018
17:30 - 18:00
Walter E Washington Convention Center - 207A

The Juno spacecraft entered into a highly elliptic polar orbit about Jupiter on the 4th of July 2016. The orbit and attitude profile of the spinning spacecraft is, orbit by orbit, optimized to afford the best viewing conditions for Juno's science instruments. The orbit plane progressively drifts from dawn-dusk towards noon-midnight, as Jupiter moves about the sun. By 2020, perijove will have advanced from dusk to midday, with each 53-day orbit increasing local time by ~15 minutes. Juno's magnetometer investigation is mapping the Jovian magnetic field with unprecedented accuracy, for which each of its two vector magnetometers is paired with two star trackers (ASCs) providing attitude determination whenever viewing the celestial sphere. Juno's evolving orbit and attitude profile will, however, for a short period around the perijove, bring Jupiter through the field of view of the ASC cameras. The ASC cameras will view the night side of Jupiter during these perijove passes. Jupiter will be viewed at high slant angles, typically from the horizon to the terminator; this vantage point will naturally preclude a study of details, but yields an excellent overview of luminous night side phenomena. The ASC cameras have thus far been acquiring low-light wide-field images of these regions. We present an overview of the ASC night-side Jupiter observations obtained during the first 14 orbits, including giant lightning discharges, large scale nocti-luminescent cloud top phenomena, and perspective views of the Great Red spot facilitating an assessment of cloud height.

Authors

John Leif Joergensen
Technical University of Denmark

Finn Eskemann
Jørgensen
DTU Space, National Space Institute, Technical University of Denmark

Jose M.G. Merayo
DTU Space

Troelz Denver
DTU Space, National Space Institute, Technical University of Denmark

Mathias Benn
DTU Space, National Space Institute, Technical University of Denmark

Peter Siegboern
Joergensen
Technical university of Denmark

John E P Connerney
NASA Goddard Space Flight Center

Ronald J Oliversen
NASA Goddard Space Flight Center

Stavros Kotsiaros
Technical University

Scott J Bolton
Southwest Research Institute

Steven Levin
Jet Propulsion Laboratory

Find Similar

View Related Events
Day: Tuesday, 11 December 2018