Applied Workshop: Doppler Lidars for Wind Energy

Simon, Elliot

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Applied Workshop: Doppler Lidars for Wind Energy

Elliot Simon <ellsim@dtu.dk>
PhD Student, Meteorology & Remote Sensing, DTU Wind Energy (RISØ)
Vrije Universiteit Brussel
September 19, 2018 @ 9AM
How and what does a Doppler lidar measure?

• Doppler lidars measure motion, unlike ranging lidars (which can only measure distance)

• Simplified measurement process:
 – Laser light (near infrared, 1.5 μm) is emitted
 – Beam interacts with aerosols (particles) suspended in the air
 – The light frequency (wavelength) is shifted by the apparent speed
 – The backscatter signal is received and digitized
 – The dominant frequency is found by spectral analysis
 – Using the Doppler shift and speed of light, the radial velocity is obtained

\[\Delta f = \frac{v_r}{c} f_0; \text{where } \Delta f = f - f_0 \]

• True wind speed & radial wind speed relationship

\[v_r = v \times \cos(\theta) \]

\(\theta \) = beam alignment relative to the wind direction

When parallel: \(v_r = \text{true wind speed} \)
When perpendicular \(v_r = 0 \text{ speed} \)

Figure source: Vasiljevic (2015)
Two varieties: Pulsed vs. continuous wave (CW)

Pulsed
- Collimated beam (parallel rays)
- Measures all distances at once
- Uses time of flight to differentiate ranges
- Probe volume is constant with distance
- Blind zone exist close to telescope

Continuous Wave
- Focused beam
- Measures one distance at a time
- Must refocus to measure at another point
- Probe volume is a 4th power function of focus range
- Can measure very close to telescope

Figure source: Photonics.com

Figure source: Simley et.al. 2018
Doppler lidar applications in wind energy

- Wind resource assessment (e.g. wind profiles, big picture over complex terrain)
- Validation of other sensors and as an independent observation
- Power performance assessment (ensure turbine performs as expected)
- Validation of models (e.g. wind atlases, LES)
- Turbine wake and inflow measurements (e.g. validating wake and load models)
- Wind turbine & wind farm control
- Forecasting (either data assimilation into NWP or using statistical models)
Common commercial systems

Ground based profilers
- Leosphere WindCube V2
- Zephir 300
- Pentalum SpiDAR
- Mitsubishi CWL

Nacelle
- Zephir Dual Mode
- Avent (Leosphere) WindIris (4 beam)
- Windar Wind Eye/Vision (2/4 beam)
- Mitsubishi NL (9 beam)

Scanning
- Leosphere WindCube 1/2/400S
- Halo StreamLine XR
- Lockheed Martin WindTracer
- Galion Lidar
Common measurement techniques

- Line of sight (LOS)
- Doppler beam swing (DBS)
- Velocity azimuth display (VAD)
- Plan position indicator (PPI)
- Range height indicator (RHI)

Others
- Dual Doppler
- Triple Doppler
- Adaptive
- Complex
<table>
<thead>
<tr>
<th>Strengths</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable / relatively fast to deploy and move</td>
<td>Only radial measurements</td>
</tr>
<tr>
<td>Spatial measurement</td>
<td>Measurements are spatially averaged (probe volume)</td>
</tr>
<tr>
<td>Measures remotely (no tower, no flow distortion)</td>
<td>Limited by low backscatter signal in certain conditions (availability)</td>
</tr>
<tr>
<td>Configurable ranges</td>
<td>Eye/laser safety</td>
</tr>
<tr>
<td>Scanning lidar trajectories are configurable (point/area/volume)</td>
<td>Power consumption</td>
</tr>
<tr>
<td>Validation history against calibrated sensors</td>
<td>Beam blockage</td>
</tr>
<tr>
<td></td>
<td>Requires expert knowledge</td>
</tr>
<tr>
<td></td>
<td>Limited inclusion in standards</td>
</tr>
<tr>
<td></td>
<td>Limited “bankability” (acceptance)</td>
</tr>
</tbody>
</table>
Data formats

• Most devices output measurements in CSV text format, 1 file per 10 minutes

• Community isn’t united yet, but we are starting to get there!

• FAIR data principles (Findable, Accessible, Interoperable, Reusable)

• e-WindLidar: standardization group
 – Metadata cards
 – Lidaco: modular converter to netCDF4 format
 – Data catalogue (citable with DOI, permissions system)
 – Common tools and data products: spectra > radial speeds > vector > flow parameters
 – Upcoming workshop: October 3rd @ DTU Risø
Closing remarks

• DTU PhD summer school on Remote Sensing for Wind Energy
 – June 24-28, 2019 @ Risø (1 week, 2.5 ECTS)

• Questions?

• Let’s begin the exercise!
• If you want to follow/play along on your own computer:
 – Download Python Anaconda distribution (3.6.x version) - add to PATH env. variable
 https://www.anaconda.com/download/
 – Clone repository, or download files from GitHub page:
 – Navigate to where you saved the files (file explorer or shell)
 • If file explorer on windows: Shift + Right Click > Open command window here
 • “jupyter notebook” will launch a browser window
 • Open the .ipynb file