Advanced Wound Care Adhesives with New Functional Properties

Chiaula, Valeria; Mazurek, Piotr Stanislaw; Nielsen, Anders Christian; Tornøe, Jens; Skov, Anne Ladegaard

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Advanced Wound Care Adhesives with New Functional Properties

Valeria Chialula¹², Piotr Mazurek¹, Anders Christian Nielsen², Jens Tornøe², Anne Ladegaard Skov¹

¹. Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Saltofts Plads 227, 2800 Kgs. Lyngby, Denmark
². Coloplast A/S, Humlebøk, Denmark

Introduction
Wound healing is a dynamic process characterized by three overlapping cellular phases: inflammation, new tissue formation, and remodeling. Chronic wounds, which are often manifested in elderly and diabetic patients, result from anomalies in the cellular and molecular wound repair mechanism. Such wounds can lead to significant disability, amputation, and increased mortality. The understanding of the normal wound healing mechanism and the consideration of the complexity of the wound environment, given by, e.g., hypoxia or bacterial infections, are crucial factors in order to develop an effective therapeutic approach. Here, we propose a novel, skin-friendly, industrially relevant silicone/glycerol hybrid adhesive with new functional properties, including improved moisture handling due to the incorporation of emulsified glycerol and dispersion of active compounds by glycerol-embedding. This particular matrix paves the way for an innovative drug delivery system. Various parameters will be taken into account in order to develop a relevant adhesive, in particular glycerol content, glycerol domain size and adhesive thickness.

Background
Wound Healing: 4 Cellular Phases

• Bacterial infection
• Hyperproliferation epidermis: stalled re-epithelialization
• Persistent inflammation
• Remodeling

Chronic Wound Healing Process

Focus: Appropriate Dressing for Appropriate Wound Environment

Development of Novel, Skin-Friendly Glycerol-Silicone Hybrid Adhesive

Silicone Adhesives – Gentle Skin Adhesion Properties

Improved moisture handling
Incorporation of emulsified glycerol
Release of active compounds
Glycerol-incorporation of active compounds
Beneficial skin care effects
Glycerol

Experimental Work and Results

Release of Active Compounds: G20_SA and G40_SA Profiles

Stability and Morphology of the Emulsions: G20_SA as Example

SA*: S stands for silicone, A stands for adhesive.
G1*: G stands for glycerol, X stands for glycerol phr*, which is glycerol weight amount per hundred parts of silicone.

Experimental Work and Results

Glycerol domains incorporated in the silicone matrix characterized by optical microscope. The emulsions were investigated with respect to the stability during 60 min. Complete curing is known to occur after this time at room temperature and the systems can be assumed to be immobilized with no further changes expected. Specifically, we studied changes in size of the glycerol domains over this time period. Pictures refer to a) t = 0 and b) t = 60 min after the formation of the emulsions. The relative average glycerol domain sizes are shown. The results presented in Figure highlighted the stability of glycerol domains size over 60 min, since no changes were observed.

References

Acknowledgment
The authors gratefully acknowledge the financial support of the Innovation Fund Denmark.