20 case studies on how to prevent the use of toxic chemicals frequently found in the Mediterranean Region

Weber, Roland; Fantke, Peter; Hamouda, Amel Ben; Mahjoub, Borhane

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
20 Case Studies on

HOW TO PREVENT THE USE OF TOXIC CHEMICALS
frequently found in the Mediterranean Region
This publication was developed by the Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC) as part of the EU-funded SwitchMed Programme. SwitchMed benefits from collaborative coordination between the European Union, the United Nations Industrial Development Organization (UNIDO), the UN Environment and Action Plan for the Mediterranean and its Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC) and the UN Environment Division.

Supervision and coordination: Magali Outters (SCP/RAC), Kimberley de Miguel (SCP/RAC)

Authors: Roland Weber (POPs Environmental Consulting, Germany), Peter Fantke (Technical University of Denmark), Amel Ben Hamouda and Borhane Mahjoub (Institution of Agricultural Research and Higher Education, University of Sousse, Tunisia)

For bibliographic purposes this volume may be cited as: 20 case studies on how to prevent the use of toxic chemicals frequently found in the Mediterranean Region. Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC). Barcelona, 2018.

Design formatting, graphics and illustrations: Dalia Sciama

Cover photo: © Eduard Lysenko

Printing: GAM Digital, Barcelona, printed on recycled Cocoon Offset paper

Copyright: This publication may be reproduced, in full or in part, for educational or non-profit purposes without special permission from the Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC) provided that the source is acknowledged. SCP/RAC would like to receive a copy of any publication using this publication as a source. This publication may not be resold or used for any other commercial purpose without the written permission of SCP/RAC.

Disclaimer: This publication was produced with the assistance of the European Union. The contents of this publication are the sole responsibility of the Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC) and do not reflect the views of the European Union.

Acknowledgements: The authors express their gratitude to the people who have contributed to this publication, who facilitated valuable information and particularly to Dr. Simona Balan and Christine Herold for proof reading.

For further information, please contact:

www.switchmed.eu
moutters@scprac.org

English version 2018, also available in French

Legal Deposit : B 17824-2018
20 Case Studies on

HOW TO PREVENT THE USE OF TOXIC CHEMICALS

frequently found in the Mediterranean Region
TABLE OF CONTENTS

- List of tables 6
- List of figures 7
- Acronyms and abbreviations 8

FOREWORD 10

INTRODUCTION 12
- How to use this publication 14
- Rationale for case study selection. Context and limitations 16

20 TOXIC CHEMICALS: OVERVIEW 17

ANTIMICROBIALS AND SURFACTANTS 21
1. Triclosan in personal care products 22
2. Alkylphenol ethoxylates as surfactants in textile industry 24

BISPHENOLS AND PHTHALATES 27
3. Bisphenol A-based polycarbonate in baby bottles 28
4. Bisphenol A as a developer in thermal paper 30
5. Polyethylene plastic bags 33
6. PVC with DEHP in medical appliances 36
7. PVC in toys and childcare products 39

Accepted Final Report
FLAME RETARDANTS AND SHORT CHAIN CHLORINATED PARAFFINS
8. Commercial decabromodiphenyl ether in textiles 44
9. Short chain chlorinated paraffins as metal working fluids 48
10. Commercial decabromodiphenyl ether in plastic electronics and transportation 51
11. Short chain chlorinated paraffins in fatliquoring in leather 54

HIGHLY FLUORINATED
12. Per- and polyfluorinated alkylated substances in firefighting foam 58
13. Per- and polyfluorinated alkylated substances in textile hydrophobing 61

CERTAIN METALS (AND THEIR SALTS)
14. Lead chromate pigments in paints 66
15. Lead oxide in rustproof primer paints 70
16. Copper chromium arsenate in wood treatment 74
17. Chromium in leather tanning 77

PESTICIDES
18. Synthetic pesticides used in agriculture 82

SOLVENTS
19. Perchloroethylene in dry cleaning 88
20. Perchloroethylene in metal cleaning 90

NOTES AND REFERENCES 93
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Chemical identity of triclosan</td>
<td>22</td>
</tr>
<tr>
<td>Table 2</td>
<td>Chemical identity of commonly used NPEOs</td>
<td>24</td>
</tr>
<tr>
<td>Table 3</td>
<td>Chemical identity of available safer alternatives for NPEOs</td>
<td>25</td>
</tr>
<tr>
<td>Table 4</td>
<td>Chemical identity of BPA and PC</td>
<td>29</td>
</tr>
<tr>
<td>Table 5</td>
<td>Chemical identity of Bisphenol A (BPA)</td>
<td>31</td>
</tr>
<tr>
<td>Table 6</td>
<td>Chemical alternatives to bisphenol A (US EPA 2014)</td>
<td>31</td>
</tr>
<tr>
<td>Table 7</td>
<td>Chemical identity of DEHP(Bis(2-ethylhexyl) phthalate)</td>
<td>37</td>
</tr>
<tr>
<td>Table 8</td>
<td>Main phthalates used as plasticizers in soft PVC toys</td>
<td>39</td>
</tr>
<tr>
<td>Table 9</td>
<td>Phthalate plasticizers critical toxic effects and Tolerable Daily Intakes (TDI)</td>
<td>40</td>
</tr>
<tr>
<td>Table 10</td>
<td>Chemical identity of c-DecaBDE and its main constituent, BDE-209</td>
<td>44</td>
</tr>
<tr>
<td>Table 11</td>
<td>Eurostat data on EU27 DecaBDE imports (tonnes) for the years 2000-2012</td>
<td>45</td>
</tr>
<tr>
<td>Table 12</td>
<td>Chemical identity of short-chain chlorinated paraffins (SCCPs)</td>
<td>48</td>
</tr>
<tr>
<td>Table 13</td>
<td>Chemical identity of c-DecaBDE and its Antimony(III) oxide (ATO) synergis</td>
<td>51</td>
</tr>
<tr>
<td>Table 14</td>
<td>Alternative resin systems with non-halogenated flame retardant</td>
<td>52</td>
</tr>
<tr>
<td>Table 15</td>
<td>Chemical identity of short-chain chlorinated paraffins (SCCPs)</td>
<td>55</td>
</tr>
<tr>
<td>Table 16</td>
<td>Chemical identity of lead chromate pigments used in paints</td>
<td>66</td>
</tr>
<tr>
<td>Table 17</td>
<td>Substances used as alternatives for the lead chromate pigment family</td>
<td>69</td>
</tr>
<tr>
<td>Table 18</td>
<td>Chemical identity of lead oxide used in rustproof primer paints</td>
<td>70</td>
</tr>
<tr>
<td>Table 19</td>
<td>Chemical identity of copper chromium arsenate</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST
OF
FIGURES

Table 20 Chemical identity of chromium species used or formed in chromium tanning 77
Table 21 Some biological substitutes for synthetic pesticides 85
Table 22 Chemical identity of perchloroethylene (perc) 88
Table 23 Chemical identity of perchloroethylene (perc) 90
Table 24 Alternatives to perchloroethylene (perc) in metal cleaning 91

Figure 1 Reusable alfa bags “Koffa” 34
Figure 2 Multiple purpose bag 35
Figure 3 Ranking of plastic according to life cycle considerations 41
Figure 4 Approaches of flame retardant substitution 53
Figure 5 Map of Lead Paint Limits 67
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Acrylonitrile butadiene styrene</td>
</tr>
<tr>
<td>ACQ</td>
<td>Alkaline copper quaternary</td>
</tr>
<tr>
<td>AFFF</td>
<td>Aqueous Film-Forming Foam</td>
</tr>
<tr>
<td>AFFF-AR</td>
<td>Alcohol Resistant Aqueous Film-Forming Foam</td>
</tr>
<tr>
<td>APEOs</td>
<td>Alkylphenol ethoxylates</td>
</tr>
<tr>
<td>AR</td>
<td>Alcohol resistant</td>
</tr>
<tr>
<td>ATO</td>
<td>Antimony trioxide</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>BADP</td>
<td>Bisphenol-A diphenyl phosphate</td>
</tr>
<tr>
<td>BAT</td>
<td>Best Available Techniques</td>
</tr>
<tr>
<td>BBP</td>
<td>Butyl benzyl phthalate</td>
</tr>
<tr>
<td>BEP</td>
<td>Best Environmental Practices</td>
</tr>
<tr>
<td>BFRR</td>
<td>Brominated Flame Retardant</td>
</tr>
<tr>
<td>BiVa</td>
<td>Bismuth Vanadate</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>BPA</td>
<td>Bisphenol A</td>
</tr>
<tr>
<td>BPADP</td>
<td>Bisphenol A diphosphate</td>
</tr>
<tr>
<td>BPF</td>
<td>Bisphenol F</td>
</tr>
<tr>
<td>BPS MAE</td>
<td>Phenol,4-[[4-(2-propen-1-yloxy)phenyl] sulfonyl]</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>CCA</td>
<td>Copper Chromium Arsenate</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CEPA</td>
<td>Canadian Environmental Protection Act</td>
</tr>
<tr>
<td>CICP</td>
<td>Complex Inorganic Coloured Pigments</td>
</tr>
<tr>
<td>CMR</td>
<td>Carcinogenic, mutagenic, reprotoxic</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CoRAP</td>
<td>Community Rolling Action Plan</td>
</tr>
<tr>
<td>CSSTEE</td>
<td>Scientific Committee for Toxicity, Ecotoxicity and the Environment</td>
</tr>
<tr>
<td>DALYs</td>
<td>Disability Adjusted Life Years</td>
</tr>
<tr>
<td>DBP</td>
<td>Dibutyl phthalate</td>
</tr>
<tr>
<td>DCPS</td>
<td>4,4’-Dichlorodiphenyl sulphone</td>
</tr>
<tr>
<td>DecaBDE</td>
<td>Decabromodiphenyl ether</td>
</tr>
<tr>
<td>DecaBDPE</td>
<td>Decabromodiphenyl ethane</td>
</tr>
<tr>
<td>DEHP</td>
<td>Bis(2-ethylhexyl) benzene-1,2-dicarboxylate</td>
</tr>
<tr>
<td>DHPS</td>
<td>4,4’-Dihydroxydiphenyl sulphone</td>
</tr>
<tr>
<td>DIDP</td>
<td>Diisodecyl phthalate</td>
</tr>
<tr>
<td>DNOP</td>
<td>Di-n-octyl phthalate</td>
</tr>
<tr>
<td>DNOP</td>
<td>Di-iso-nonyl phthalate</td>
</tr>
<tr>
<td>DINP</td>
<td>L,2-Cyclohexanedicarboxylic acid, diisononylester</td>
</tr>
<tr>
<td>DPS</td>
<td>Diphenyl sulphone</td>
</tr>
<tr>
<td>EAF</td>
<td>Electric arc furnace</td>
</tr>
<tr>
<td>EALs</td>
<td>Environmentally adapted lubricants</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ECHA</td>
<td>European Chemicals Agency</td>
</tr>
<tr>
<td>ECMO</td>
<td>Extracorporeal Membrane Oxygenation</td>
</tr>
<tr>
<td>EDC</td>
<td>Endocrine disrupting chemical</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ESIS</td>
<td>European Chemical Substances Information System</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene vinyl acetate</td>
</tr>
<tr>
<td>F3</td>
<td>Fluorine-free acetate</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FDA</td>
<td>Federal Drug Administration</td>
</tr>
<tr>
<td>FTAs</td>
<td>Fluorotelomer acrylics</td>
</tr>
<tr>
<td>FTOHs</td>
<td>Fluorotelomer alcohols</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GSPI</td>
<td>Green Science Policy Institute</td>
</tr>
<tr>
<td>HCB</td>
<td>Hexachlorobenzene</td>
</tr>
<tr>
<td>HCWH</td>
<td>Health Care Without Harm</td>
</tr>
<tr>
<td>HDPE</td>
<td>High density polyethylene</td>
</tr>
<tr>
<td>HFC</td>
<td>Hydrofluorocarbons</td>
</tr>
<tr>
<td>HHPs</td>
<td>Highly hazardous pesticides</td>
</tr>
<tr>
<td>HIPS</td>
<td>High Impact Polystyrene</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IFOAM</td>
<td>International Federation of Organic Agriculture Movements</td>
</tr>
<tr>
<td>IHME</td>
<td>Institute for Health Metrics and Evaluation</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated Pest Management</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>LCO₂</td>
<td>Liquid carbon dioxide</td>
</tr>
<tr>
<td>LDPE</td>
<td>Low density polyethylene</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>LCCPs</td>
<td>Long-chain chlorinated paraffins</td>
</tr>
<tr>
<td>MBHA</td>
<td>Methyl bis(4-hydroxyphenyl) acetate</td>
</tr>
<tr>
<td>MCCPs</td>
<td>Medium-chain chlorinated paraffins</td>
</tr>
<tr>
<td>MENA</td>
<td>Middle East and North Africa</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>MWF</td>
<td>Metal working fluid</td>
</tr>
<tr>
<td>NPEOs</td>
<td>Nonylphenol ethoxylates</td>
</tr>
<tr>
<td>NPs</td>
<td>Nonylphenols</td>
</tr>
<tr>
<td>NICU</td>
<td>Neonates in intensive care units</td>
</tr>
<tr>
<td>ODS</td>
<td>Ozone depleting substance</td>
</tr>
<tr>
<td>OFPA</td>
<td>Organic Foods Production Act of 1990 (US)</td>
</tr>
<tr>
<td>PA</td>
<td>Polyamide</td>
</tr>
<tr>
<td>PAA</td>
<td>Primary aromatic amines</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>PAN</td>
<td>Pesticide Action Network</td>
</tr>
<tr>
<td>PbB</td>
<td>Blood lead</td>
</tr>
<tr>
<td>PBAT</td>
<td>Polybutyrate adipate terephthalate</td>
</tr>
<tr>
<td>PBDD/Fs</td>
<td>Polybrominated dibenzo-p-dioxins and dibenzofurans</td>
</tr>
<tr>
<td>PBDE</td>
<td>Polybrominated diphenyl ether</td>
</tr>
<tr>
<td>PBDF</td>
<td>Polybrominated dibenzofurans</td>
</tr>
<tr>
<td>PBS</td>
<td>Poly(butylene succinate)</td>
</tr>
<tr>
<td>PBT</td>
<td>Persistent, bioaccumulative, and toxic</td>
</tr>
<tr>
<td>PC</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated biphenyls</td>
</tr>
<tr>
<td>PCE</td>
<td>Perchloroethylene (perc)</td>
</tr>
<tr>
<td>PCDD/Fs</td>
<td>Polychlorinated dibenzo-p-dioxins and dibenzofurans</td>
</tr>
<tr>
<td>PCL</td>
<td>Polycaprolactone</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PERC</td>
<td>Perchloroethylene; tetrachloroethane</td>
</tr>
<tr>
<td>PES</td>
<td>Polynethersulfone</td>
</tr>
<tr>
<td>PET</td>
<td>Polytetrafluoroethylene terephthalate</td>
</tr>
<tr>
<td>PFAA</td>
<td>Perfluoroalkyl alkyl acid</td>
</tr>
<tr>
<td>PFASs</td>
<td>Per- and polyfluorinated alkylated substances</td>
</tr>
<tr>
<td>PFCs</td>
<td>Per- and polyfluorinated chemicals</td>
</tr>
<tr>
<td>PFHxA</td>
<td>Perfluorohexanoic acid</td>
</tr>
<tr>
<td>PFOS</td>
<td>Perfluorooctanesulfonic acid; Perfluorooctanesulfonate</td>
</tr>
<tr>
<td>PFR</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>PHA/PHB</td>
<td>Polylactide</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid)</td>
</tr>
<tr>
<td>POP</td>
<td>Persistent organic pollutant</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>Ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PPO</td>
<td>Poly(p-phenylene oxide)</td>
</tr>
<tr>
<td>PTEF</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>RDAs</td>
<td>Recommended Dietary Allowances</td>
</tr>
<tr>
<td>RDPA</td>
<td>Resorcinol-bis(diphenylphosphate)</td>
</tr>
<tr>
<td>REACH</td>
<td>Registration, Evaluation, and Authorisation of Chemicals</td>
</tr>
<tr>
<td>SDGs</td>
<td>Sustainable Development Goals</td>
</tr>
<tr>
<td>SF</td>
<td>Solvent-free</td>
</tr>
<tr>
<td>SVHC</td>
<td>Substance of Very High Concern</td>
</tr>
<tr>
<td>TCE</td>
<td>Trichloroethylene</td>
</tr>
<tr>
<td>TCP</td>
<td>Trichloropropane</td>
</tr>
<tr>
<td>TDI</td>
<td>Tolerable daily intake</td>
</tr>
<tr>
<td>TOTM</td>
<td>Tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate</td>
</tr>
<tr>
<td>TPEs</td>
<td>Thermoplastic elastomers</td>
</tr>
<tr>
<td>TSCA</td>
<td>Toxic Substances Control Act</td>
</tr>
<tr>
<td>UNEA</td>
<td>United Nations Environment Assembly</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USD</td>
<td>United States dollars</td>
</tr>
<tr>
<td>UU</td>
<td>Urea Urethane</td>
</tr>
<tr>
<td>vPvB</td>
<td>Very persistent and very bioaccumulative</td>
</tr>
<tr>
<td>w/w</td>
<td>Wet weight</td>
</tr>
<tr>
<td>wt%</td>
<td>Percent weight</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>ZRP</td>
<td>Zinc-rich primers</td>
</tr>
</tbody>
</table>
Between 1930 and 2000 the global production of man-made chemicals increased from 1 million to 400 million tonnes each year. In 2015 alone, nearly 22% of the world chemical exports came from the European Union, making it the largest chemicals exporting region in the world. It is evident that the chemical industry is a manufacturing success story and a wealth-generating sector of the economy.

While chemicals bring significant benefits to society, there is also overwhelming available evidence of the widespread contamination chemicals have caused to our planet. We are surrounded by man-made chemicals, from ingredients in cosmetics and clothing to plastic additives and pesticides - our 21st century society depends on chemicals more than ever.

Each and every second, more than 300 kg of harmful chemicals are released into our air, land and water by industrial facilities around the world, which represents approximately 10 million tonnes every year. Emitted chemicals are absorbed by wildlife and humans through the skin or ingested via food and water and although their long-term effects are often unknown, over 2 million tonnes are recognized carcinogens. Effects associated with exposure to chemicals may include allergies and hypersensitivity, damage to the nervous system, reproductive disorders and disruption of the immune system. The negative impacts of our chemicals have been found in households, industrial regions, marine systems, the tropics and even the Arctic.

Growing scientific research on chemical contamination has exposed a bitter truth, stressing the need to take urgent action to combat chemical emissions and exposure at a national and global level. This is the purpose of global conventions on the management of highly toxic chemicals, such as the Stockholm Convention on Persistent Organic Pollutants, as well as other legally binding international instruments. The implementation of such instruments is designed to gradually decrease the presence of chemicals that are proved to be highly toxic, very persistent and bioaccumulative in the environment.

The recent United Nations’ Sustainable Development Goals (SDGs) also set some targets related to chemical pollution. The goal on responsible consumption and production aims at achieving the environmentally sound management of chemicals and all wastes throughout their life cycle and significantly reduce their release to air, water and soil in order to minimize their adverse impacts on human health and the environment by 2020.

Being aware of the risks that the release of toxic chemicals poses on the environment, in the Mediterranean region, the 22 Contracting Parties to the Barcelona Convention for the Protection of the Marine Environment and the Coastal Region have adopted a Regional Plan on Persistent Organic Pollutants (POPs) which are especially harmful chemical substances. The plan identifies a series of actions that the countries commit to implement to ensure the prevention, phase-out and sound management of those toxic chemicals. In that line, one of the strategic objectives of the Mediterranean Action Plan mid-term strategy 2016-2021 is to prevent, reduce and control selected pollutants inputs, oil discharges and spills.

Furthermore, the Regional Action Plan on Sustainable Consumption and Production in the Mediterranean, adopted by the Contracting Parties to the Barcelona Convention, indicates the need to promote, use and develop tools such as eco-design, Life Cycle Management, risk assessment of chemicals, substitution of...
hazardous chemicals and Cradle to Cradle design to facilitate the sustainable design and production of manufactured goods.

In that context, the Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC) is highly involved in the implementation of policies and pilot actions to prevent the use of toxic chemicals in southern Mediterranean countries. SCP/RAC is a centre for international cooperation supporting the implementation of sustainable consumption and production and circular economy approaches, it develops its activities under both the Barcelona Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean and the Stockholm Convention on Persistent Organic Pollutants.

In order to tackle that issue, SCP/RAC, with the support of the EU-Funded SwitchMed Programme (www.switchmed.eu), has identified 20 case studies on how to prevent and minimize the use of selected toxic chemicals that are widely used in the Southern Mediterranean region.

Safe and innovative alternatives are showcased here as a viable way to phase out and substitute toxic chemicals found in everyday products while encouraging responsible consumption and production among consumers, businesses, entrepreneurs and civil society organizations in the Mediterranean region. The solutions that are described are equally capable of generating revenues from all parts of the globe and have been prioritized through a multi-criteria analysis of their effectiveness and replicability in the Middle East and North Africa region.

Through this publication, SCP/RAC calls on green entrepreneurs, committed Civil Society Organizations, innovators and change-makers in the Mediterranean to develop and scale the most adaptable solutions and on policy makers to further implement global and regional agreements and action plans and develop the necessary national regulatory framework.

Gaetano Leone
Coordinator
UN Environment/Mediterranean Action Plan Coordinating Unit
Barcelona Convention Secretariat

Enrique de Villamore Martín
Director
Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC)
UN Environment/Mediterranean Action Plan
Acute exposure to harmful chemicals can lead to death or serious illness. Long-term exposure to these substances can increase the risk of developmental and reproductive disorders, immune system and endocrine disruption, impaired nervous system function and development of certain cancers. Examples include additives used to enhance the performance of plastics, certain metals and solvents as well as pesticides and fertilizers, which can infiltrate water sources – ending up as marine litter, contaminating drinking water and animal species. Such contamination not only leads to a range of public health and environmental impacts but also poses large social and economic costs. There are a variety of hazardous synthetic chemicals, which are of particular concern and currently being used in our everyday products. These include:

1. Very persistent and very bioaccumulative (vPvB) chemicals, which break down slowly or not at all and accumulate in the fatty tissue of living organisms and are found in higher concentrations at higher levels of the food chain;
2. Endocrine disrupting chemicals (EDCs), which interfere with the hormone systems of animals and/or humans;
3. Chemicals, which cause cancer, reproductive problems, or damage DNA, labelled CMR (carcinogenic, mutagenic or toxic for reproduction).

What further complicates the situation is the general lack of clear safety information provided, such as toxicity and exposure potentials of chemicals. The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is not thoroughly established in the region. Increasing the implementation of GHS labelling on products could improve the safety and contribute to reducing the exposure of the population to toxic chemicals.

It is often the case that hazardous chemicals, which have been restricted or banned in the European Union (EU) or other industrialized regions, are still used in the Southern Mediterranean region. Good management, use and disposal of chemicals is particularly important in developing countries, where economies may be heavily reliant on these industries and where awareness of risks from chemical exposures is very low; the magnitude of the problem is often unknown and policies to address sound chemicals management are limited or non-existent.

Why is urgent action needed to tackle the issue of toxic chemicals in the Mediterranean region?

What are the key Global and European policy frameworks related to toxic chemicals relevant for the Mediterranean region? It is widely recognised that regulations are the main drivers for change and this is specially the case for the issue of toxic chemicals. Those regulations are providing private and public institutions with the legal instruments to fight this battle. The implementation of policies at a national level to improve regulation and control of sale, distribution and use as well as the global conventions on the management of highly toxic chemicals is critical. At the global level, the Stockholm Convention, bans the trade of POPs for which Parties have eliminated production and use, allowing the exportation only for environmentally sound disposal. The Convention is a legally binding instrument and it also allows Parties to register for specific exemptions on a country-by-country basis, which is often the case in the countries of the Southern Mediterranean region where countries may request exemptions for particular use. A reduction of emissions and exposure to harmful chemicals at the global level is also promoted through the global sustainability agenda via 17 SDGs with specific targets combating chemical pollution. Some examples include the achievement of the environmentally sound management of chemicals and all wastes throughout their life cycle by 2020, the prevention and
significant reduction of marine pollution of all kinds, in particular from land-based activities by 2025\(^5\) and the reduction of the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination by 2030\(^6\).

Another important tool aiming to improve the protection of human health and the environment, that could inspire further regulatory actions in the Mediterranean, is the EU chemical legislative framework. It includes the CLP (Regulation on Classification, Labelling and Packaging) for better and earlier identification of the intrinsic properties of chemical substances and REACH (regulation for Registration, Evaluation, Authorisation and Restriction of Chemicals), which creates procedures for restricting the use of substances that do not meet specified safety standards, encouraging substitution of harmful chemicals by safer alternatives.

What are the most suitable approaches for the substitution of toxic chemicals in products?

The substitution of hazardous substances is horizontal to many policies dealing with workers’ health and safety, products’ safety and the environment and is thoroughly explained and promoted in the EU Study for the strategy for a non-toxic environment of the 7th EAP\(^7\). Experts advise that there is a need for a knowledge-based, preventive approach to chemicals risks management throughout their life cycle in order to reduce the risks to human health and ecosystems.

However, there are several challenges and obstacles present in the current phasing out process of hazardous chemicals\(^8\): substitution by chemicals with similar properties have resulted in regrettable substitutions, phase-out agreements are often voluntary and do not cover all relevant manufacturers or have a wide range of exemptions. It is also problematic to find a suitable alternative achieving the same performances in the applications, without altering other functions, properties or processes. Pressure from the supply chain and from within businesses have also contributed to substitution. A variety of voluntary and mandatory policy tools have also been used, such as education, procurement, lists of chemicals of concern, eco-labelling, research and development on safer substitutes and chemical phase-out requirements, to encourage companies using chemicals to develop safer substitutes. The chemical sector is strategic and if it moves toward sustainability it could have an essential contribution to sustainable development and the country’s competitiveness, since its activity has repercussions in other sectors.

What is the objective of this SwitchMed Publication?

It is in support of the global (SDGs) and Mediterranean (Barcelona Convention) sustainability agenda that the SwitchMed Programme (www.switchmed.eu) is contributing to tackle the issue of toxic chemicals. This publication aims to raise awareness and provide an overview of safe alternatives for 20 selected hazardous substances used in the Mediterranean region in various product applications and to involve policy makers, businesses, retailers, academia, civil society and consumers in order to redesign the way in which goods and services are produced and consumed.

With that, the SwitchMed Programme aims to facilitate the regional and global transition towards sustainable consumption and production (SCP) in the southern Mediterranean region, namely in Morocco, Algeria, Tunisia, Libya, Egypt, Israel, Palestine, Jordan and Lebanon. This multidimensional regional initiative is funded by the European Union and implemented thanks to collaboration between the EU, UNIDO, UN Environment /Mediterranean Action Plan and its Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC) and UN Environment, Economy Division.
How to use this publication

This publication has been conceived as a useful and practical tool for consumers, entrepreneurs, businesses and civil society organizations worldwide who are willing to contribute to combating hazardous chemicals as well as supporting socioeconomic development in the region. At the same time, in order to trigger concrete action, the SwitchMed Programme has made funds available so some of these initiatives are replicated and adapted in selected countries of the Middle East and North Africa region.

In order to make it as clear and understanding as possible, the 20 identified chemicals described in this report have been grouped in 7 different classes. Grouping strategies have been proposed by institutions and environmental organisations such as Greenpeace and the European Commission\(^9\). This is the case of the Green Science Policy Institute which has developed the Six Classes program (http://www.sixclasses.org/) that focuses on reducing the use of entire classes of chemicals of concern, rather than phasing out individual problematic chemicals one at a time.

A key element of the approach is to bring together scientists and decision-makers from business, government, academia and non-for-profit organizations to develop coordinated strategies for reducing the production and use of chemicals of concern. Tackling entire groups of chemicals can prove more effective, because there are a great number of chemicals in use, most of which have not been well studied and their impacts on human and environmental health are not sufficiently understood. Moreover, when a harmful chemical is phased out, often after years of research and advocacy, the replacement is likely to be a “chemical cousin” with similar structure and potential for harm. The Six Classes approach can help to prevent such “regrettable substitutions” and accelerate reductions in toxics use.

The summary table shows a brief description of each selected chemical with key information to guide the reader. This will allow the user of this publication to find the most relevant information according to two criteria:

- **The application:**
 Authors discuss case studies on a range of different uses and industries including automotive, agriculture and medical to industrial processes such as metal working, wood treatments and textiles. Other applications include consumer goods, such as plastic bags, personal care products and childcare. So for example you can search for toxic chemicals used in consumer articles like toys with rubber or plastic components that come into contact with the human skin or the oral cavity.

- **The 7 classes:**
 The grouping used in this work has included the 6 classes described by the GSPI (www.greensciencepolicy.org): Antimicrobials, bisphenols and phthalates, flame retardants, highly fluorinated substances, metals and solvents; plus an additional type which highlights one of the first kind of chemicals addressed by the Stockholm Convention and the Strategic Approach of International Chemical Management (SAICM): hazardous pesticides. The seven categories have been listed in alphabetical order and are defined as follows:
1. Antimicrobials and surfactants
are chemicals added to products to kill or inhibit the growth of microbes. They are also called antibacterials or biocides. Antimicrobials of concern include halogenated aromatic compounds such as triclosan and triclocarban, nanosilver and quaternary ammonium salts (quats) such as benzalkonium chloride.

2. Bisphenols and phthalates
are chemicals that have many uses, including making plastics stronger or more flexible. Bisphenols are present in some polycarbonate plastic products (including water bottles, food storage containers and packaging, sports equipment and compact discs), epoxy resin liners of aluminum cans and cash register receipts. Phthalates can be found in some polyvinyl chloride (PVC) plastic products (including vinyl flooring, shower curtains, toys, plastic wrap and food packaging and containers), glues, caulks, paints, personal care products and air fresheners.

3. Flame retardants and short chain chlorinated paraffins
are additives that are designed to slow ignition and prevent fires and they are used to meet flammability regulations. Flame retardants of concern include organohalogen and organophosphate chemicals such as polybrominated diphenyl ethers (PBDEs) and chlorinated tris (TDCPP). Short chain chlorinated paraffins are used in some applications as flame retardants but also for other industrial uses addressed in this section.

4. Highly Fluorinated
sometimes referred to as PFCs, are used in many consumer products and industrial applications because of their oil, stain and water-repellent properties. Examples of chemicals in this class include PFOA, PFOS and more than 4000 other PFASs.10

5. Certain metals (and their salts)
Mercury, arsenic, cadmium and lead are elements that occur naturally in the earth’s crust. Mining and smelting, fossil fuel combustion, industrial processes and the use and disposal of products containing them have led to widespread environmental contamination and human exposure and health harm.

6. Pesticides
A pesticide is any substance used to control pests which may be target insects, vegetation, fungi, etc. Most pesticides control the pests by poisoning them. Unfortunately, pesticides can be poisonous to humans as well. Some are very poisonous, or toxic and may seriously injure or even kill humans.

7. Solvents
are a diverse class of chemicals that are used to dissolve or disperse other substances. Some solvents of concern include aromatic hydrocarbon solvents (e.g., toluene, xylene, benzene) and halogenated organic solvents (e.g., methylene chloride, perchloroethylene, trichloroethylene).

After the summary table, an in-depth description of each case study can be found, following the same structure. An introductory chapter describes the use of the substance with its standard labelling, classification and products where it can be found followed by its hazard profile and regulatory distribution in the Mediterranean. The focus of each case study comprises the second half which includes the description of the proposed safe alternatives, the identification and availability in the Mediterranean Region. Finally, the selected substances are put into their technical, economical and risk profile, taking into account circularity aspects such as the life cycle considerations and environmental impacts.
Rationale for case study selection. Context and limitations

In order to identify a set of relevant substitution cases that can serve as a first list of case studies for boosting phase-out of hazardous chemicals in various product applications, we systematically screened several existing substitution lists. These were included in the screening are the substitution portal SUBSPORT, SwitchMed reports, REACH case studies, the Plastics Ban List from the Better Alternatives Now project, reports from the OSPAR Commission and the U.S., Swedish and Danish Environmental Protection Agencies. More than 1100 reported cases of substituting a hazardous substance in a specific product application have been screened. Based on this overview, a sub-set of cases was selected for the present project, based on the following criteria:

- Economic, exposure and environmental relevance of the hazardous substance,
- Economic relevance of the product application where the hazardous substance is used,
- Applicability of the substitution case to the Mediterranean region,
- Restriction in international context or REACH,
- Easiness of implementation of the substitution.

The focus was on existing alternatives at the time of writing this work, however, newer and better solutions might become available in future. Further research into alternatives is to be encouraged and promoted, together with better regulation systems so that larger changes can be made within the current consumption and production system. All sensitive information contained in this publication has been appropriately referenced and can be found in the annex.

This study is based on current available data of the substances and of the manufacturing processes; the proposed alternative substances had a less problematic toxicological profile at the time of writing this publication. However, it is recommended to check the most recent valid information on hazards, risks and life cycle considerations before replacing with the described alternatives.
ANTIMICROBIALS AND SURFACTANTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Chemical</th>
<th>Application</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Triclosan</td>
<td>in personal care products</td>
<td>Used as an antimicrobial in more than 2,000 consumer products including soaps, toothpastes, detergents, clothing, toys, carpets, plastics and paints. No evidence has been found to prove that the use of triclosan improves consumer health.</td>
</tr>
<tr>
<td>24</td>
<td>Alkylphenol ethoxylates as surfactants</td>
<td>in textile industry</td>
<td>This case study focuses on nonylphenol ethoxylates (NPEOs) which biodegrade into nonylphenols in wastewater treatment plants and in the environment, causing long-term adverse effects in the aquatic environment and impairing human fecundity.</td>
</tr>
</tbody>
</table>

BISPENOLS AND PHTHALATES

<table>
<thead>
<tr>
<th>Page</th>
<th>Chemical</th>
<th>Application</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Bisphenol A based polycarbonate</td>
<td>in baby bottles</td>
<td>Polycarbonate baby bottles are produced from bisphenol A monomer which remains as an impurity in the final product or depolymerize and migrates into baby food. It is a recognised endocrine disrupting chemical (EDC) causing estrogenic effects.</td>
</tr>
<tr>
<td>30</td>
<td>Bisphenol A as a developer</td>
<td>in thermal paper</td>
<td>Bisphenol A (BPA) is a commonly used colour developer in thermal paper, found in tickets, receipts, sales slips and other applications, it is an endocrine disrupting chemical (EDC) with its major exposure pathway being through skin contact.</td>
</tr>
<tr>
<td>33</td>
<td>Polyethylene</td>
<td>in plastic bags</td>
<td>The main plastics used in bags are high density polyethylene (HDPE) and low density polyethylene (LDPE), which is derived from non-renewable natural gas and petroleum. Globally, millions of single-use plastic shopping bags are discarded every day into mixed-waste streams.</td>
</tr>
<tr>
<td>36</td>
<td>DEHP in PVC</td>
<td>in medical appliances</td>
<td>DEHP is the most widely used plasticiser in single-use medical devices and is classified as toxic to reproduction. There are many non-PVC materials available which do not require phthalates or other softeners.</td>
</tr>
<tr>
<td>39</td>
<td>PVC</td>
<td>in toys and childcare products</td>
<td>PVC toys and childcare products can contain toxic additives including softeners such as phthalates and heavy metals that lead to children’s exposure due to mouthing behaviour. Alternatives include other plastics, wood or books.</td>
</tr>
</tbody>
</table>

FLAME RETARDANTS AND SHORT CHAIN CHLORINATED PARAFFINS

<table>
<thead>
<tr>
<th>Page</th>
<th>Chemical</th>
<th>Application</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Commercial decabromodiphenyl ether (c-DecaBDE)</td>
<td>in textiles</td>
<td>A widespread flame retardant used in textiles, it leads to human exposure to polybrominated diphenyl ethers (PBDEs) and brominated dioxins indoors and in vehicles and can be substituted by using alterative fibres or alternative flame retardants.</td>
</tr>
<tr>
<td>48</td>
<td>Short chain chlorinated paraffins (SCCPs)</td>
<td>as metal working fluids</td>
<td>Metal working fluids are used to lubricate parts that experience extreme pressures, such as deep drawing, tube bending or cutting and grinding and as coolants in metal processing. More than 90% of SCCPs are released into the environment.</td>
</tr>
<tr>
<td>51</td>
<td>Commercial decabromodiphenyl ether (c-DecaBDE)</td>
<td>in flame retarded plastic</td>
<td>This was a widely used flame retardant in electronics including plastic housings such as heating home appliances, irons, fans and other plastic parts in vehicles and aircrafts. Alternative materials and re-designed electronics are available.</td>
</tr>
<tr>
<td>54</td>
<td>Short chain chlorinated paraffins (SCCPs)</td>
<td>for fat liquoring in leather</td>
<td>This is an open application with related exposure to workers and consumers and has been restricted in the EU since 1990s. Better alternatives are available including natural oils such as vegetable oil and fish oil.</td>
</tr>
</tbody>
</table>
HIGHLY FLUORINATED

<table>
<thead>
<tr>
<th>Page</th>
<th>Chemical</th>
<th>Application</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Per- and polyfluorinated alkylated substances (PFASs)</td>
<td>in fire fighting foam</td>
<td>The use of fire fighting foam containing perfluorooctanesulfonic acid (PFOS) and other PFASs can result in the contamination of groundwater, drinking water and surface water, including the Mediterranean Sea.</td>
</tr>
<tr>
<td>61</td>
<td>Per- and polyfluorinated alkylated substances (PFASs)</td>
<td>in textile hydrophobing</td>
<td>Fluorinated polymers can be applied on textiles to create a durable water repellent coating. PFASs or their degradation products are highly persistent in the environment and several low-hazard alternatives are readily available.</td>
</tr>
</tbody>
</table>

CERTAIN METALS (AND THEIR SALTS)

<table>
<thead>
<tr>
<th>Page</th>
<th>Chemical</th>
<th>Application</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Lead chromate pigments</td>
<td>in decorative paints</td>
<td>Major lead pigments in decorative paints are highly toxic and are used in the Southern Mediterranean countries, particularly for colouring cooking pots. Alternatives are available and are widely used in industrial countries.</td>
</tr>
<tr>
<td>70</td>
<td>Lead oxide</td>
<td>in rustproof primer paints</td>
<td>Elevated levels of lead in blood have been reported in the region's inhabitants, including children. Elevated lead levels in children are causing decreased intelligence and increased behavioural issues.</td>
</tr>
<tr>
<td>74</td>
<td>Chromate Copper Arsenate (CCA)</td>
<td>in wood treatment</td>
<td>CCA is used in wood treatment contains carcinogenic arsenic and chromium (VI). Waste wood is sometimes used in Southern Mediterranean countries for baking bread and cooking indoor, resulting in associated exposures.</td>
</tr>
<tr>
<td>77</td>
<td>Chromium</td>
<td>in leather tanning</td>
<td>One of the main alternatives to chromium leather tanning is the use of vegetable tanning. This can prevent adverse environmental and human health impacts while promoting local employment and sustainable economic opportunities.</td>
</tr>
</tbody>
</table>

PESTICIDES

<table>
<thead>
<tr>
<th>Page</th>
<th>Chemical</th>
<th>Application</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>Synthetic pesticides</td>
<td>in agriculture</td>
<td>Hundreds of synthetic chemical pesticide active ingredients are used in agricultural practices resulting in unwanted exposures that cannot be adequately assessed while polluting the environment due to wind drift, run-off and leaching.</td>
</tr>
</tbody>
</table>

SOLVENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Chemical</th>
<th>Application</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Perchloroethylene</td>
<td>in dry cleaning</td>
<td>Perc is used by professional cleaners and has resulted in widespread contamination of groundwater and soil at dry cleaning sites. Exposure to perc is associated with a variety of adverse human health effects. CO<sub>2</sub> technology can be used instead.</td>
</tr>
<tr>
<td>90</td>
<td>Perchloroethylene</td>
<td>in metal cleaning</td>
<td>Perc is used as a degreasing agent in vapour and liquid forms. Alternatives include aqueous cleaning technologies and dry ice blasting technologies which have proven performance with low health and environmental impacts.</td>
</tr>
</tbody>
</table>
1. Triclosan in Personal Care Products

Background, identity and use
Triclosan is used as an antimicrobial in more than 2,000 consumer products including soaps, toothpastes, detergents, clothing, toys, carpets, plastics and paints.\(^{11}\) To date, no evidence has been found to prove that the use of triclosan improves consumer or patient health or prevents disease in personal care products such as hand soap, toothpaste, or cosmetics.\(^{12,13,14}\) Hence, for certain products, the use of triclosan can simply be ended - as recently highlighted in a Science Statement.\(^{14}\)

Hazard profile
Triclosan is very toxic to aquatic life and has long-lasting effects, causing serious eye irritation and skin irritation. It is an endocrine disruptor with anti-thyroid effects and androgenic and estrogenic activity.\(^{15}\) It can contribute to antibiotic/antimicrobial resistance.\(^{13}\) Additionally, Triclosan used in consumer products is released to the environment, with adverse effects to fish and biota.\(^{13}\)

Status in the Mediterranean region and internationally
In Europe, triclosan has been banned for human hygiene purposes when applied on or in contact with human skin or scalp for the primary purpose of disinfecting the skin or scalp, including application such as soap, shampoo, deodorants, household detergents and toothpaste.\(^{16}\) The US Food and Drug Administration (FDA) banned triclosan, triclocarban and a range of other antimicrobials, in over-the-counter consumer antiseptic wash products based on insufficient evidence demonstrating their safety for long-term daily use and their ability to reduce the spread of illness and infection.\(^{13}\) However, in the Southern Mediterranean region, triclosan is not restricted and is currently in use in personal care products.
Identification and availability
Traditional soap, shampoo, toothpaste and other personal care products without triclosan are available and can be used instead. One example is curd soap, which is sufficiently potent and has germicidal properties. In personal care products for example, triclosan can simply be removed without the need for substitution with other biocides. This is the case of some multinational companies that have removed triclosan from all their products, and triclosan-free products can be found in the market. The US Centre for Disease Control and Prevention (CDC) recommends that when soap and water are not available, consumers should use an alcohol-based hand sanitizer containing at least 60% alcohol.

Technical feasibility
Washing with plain soap and running water remains one of the most effective steps that consumers can take to avoid getting sick and to prevent spreading germs to others.

Economic feasibility
Since triclosan in soap, shampoo, or toothpaste can simply be removed without substitution by other biocides, the manufacturing cost are usually reduced, making the products without the additive cheaper. Furthermore, external costs like aquatic life impacts and related biodiversity loss are avoided, as are the adverse human health impacts, leading to savings in the health care sector.

Hazards, risks and life cycle considerations
Soap, shampoo, or toothpaste without triclosan and other biocides do not result in hazards or risks associated with this toxic substance. The alternative to triclosan, benzethonium chloride, has no reported endocrine disrupting effects although it is a human skin sensitizer and very toxic to aquatic life. Ethanol in hand sanitizers has no specific health or environmental risk. However, personal care products may contain other hazardous additives that provide specific properties (e.g. siloxanes D4 or D5).
2. Alkylphenol Ethoxylates as Surfactants in Textile Industry

Background, identity and use
Alkylphenol ethoxylates (APEOs) comprise a large class of substances. In many cases, the alkyl chain has nine carbon atoms. Thus, this case study focuses on nonylphenol ethoxylates (NPEOs) which biodegrade into nonylphenols (NPs) in wastewater treatment plants and in the environment. NPs are very toxic to aquatic organisms, causing long-term adverse effects in the aquatic environment and may also impair human fecundity and harm the fetus. In some countries like Germany, the substitution of APEOs/NPEOs in all relevant applications started 30 years ago. When, alternatives with good biodegradability and proven technical performance were available for almost all applications. Cost-effective biodegradable alternatives with equal or similar technical performance are readily available nowadays, such as the fatty acid alcohol ethoxylates. Nonylphenols and other alkylphenols are used in manufacturing antioxidants, lubricating oil additives, laundry and dish detergents, emulsifiers and solubilizers. These compounds are precursors to the commercially non-ionic surfactants APEOs and NPEOs which are common in many chemical formulations used to produce apparel and footwear materials, such as industrial laundry detergents, scouring agents, wetting agents, spinning oils, dispersing agents for dyes and prints, impregnating agents, pigment and leather-finishing preparations. However, APEOs/NPEOs are used for many other purposes where they can also be substituted. Commonly used NPEOs are listed in Table 2.

Hazard profile and problems
NPs, the main NPEO metabolites, are very toxic to aquatic life and may cause long-term adverse effects in the aquatic environment. They are also associated with reproductive and developmental effects in rodents and act as endocrine disruptors and xenoestrogens in humans. NPs have been detected in human breast milk, blood and urine and are known to impair human fecundity and harm the fetus. NPEOs can also cause skin and eye irritation.

Status in the Mediterranean region and internationally
The production and use of NPs and NPEOs is prohibited in the European Union since 2003. NPEOs have been listed under REACH Annex XVII. After February 2021, they must not be placed on the market in textile articles that can be expected to be washed in water during their normal lifecycle.
at concentrations equal to or greater than 0.01%. This requirement does not apply to second-hand textile articles or to new textile articles produced exclusively from recycled textiles and without added NPEOs.

Many textile sector retailers and brands (e.g., Rewe, Lidl, Nike, Adidas, Levi Strauss, Puma, Tchibo) demand their suppliers to avoid and substitute APEOs/NPEOs.

In the North African countries, no related regulations have been identified. However, laboratories from Morocco and Tunisia participated in a recent proficiency test for AP & APEO in textiles, indicating that industries or authorities are aware of the restrictions and are implementing monitoring activities.

About 30 years ago, four German industry associations (TEGEWA, FIR, IKW and IPP) issued a voluntary commitment to substitute APEOs in household and commercial applications encouraging substitution of APEOs in all household cleaning products and in various industrial sectors: oil, photographic, surface metal treatment and ferrous metal processing, leather and fur manufacturing, paper and industrial-scale cleaning operations.

Selected alternatives

alkylphenol ethoxylates as surfactants in textile industry

Identification and availability

The following substances have been identified as examples of safer alternatives in the textile sector but they might be applicable to other sectors as well. Fatty acid alcohol ethoxylates (the first two compounds in Table 3) are the most important alternatives.

Economic feasibility

The available alternatives are cost-effective and have equal or similar technical performance. Their use avoids external costs such as adverse aquatic impacts, biodiversity loss and adverse human health impacts.

Germany was able to demonstrate 30 years ago that the substitution of APEOs/NPEOs in household products and practically all relevant industrial sectors is economically viable.

Hazards, risks and life cycle considerations

The environmental releases from the application of APEO/NPEO alternatives do not result in specific hazards or risks. Fatty acid alcohol ethoxylates, are readily biodegradable and do not form toxic metabolites.

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Chemical characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>68439-46-3</td>
<td>C_{9-13} alcohols, ethoxylated (6EO)</td>
</tr>
<tr>
<td>68131-39-5</td>
<td>C_{12-15} alcohols, ethoxylated (6EO)</td>
</tr>
<tr>
<td>64366-70-7</td>
<td>Oxirane, methyl-, polymer with oxirane, mono(2-ethylhexyl ether): Ecosurf EH 9</td>
</tr>
<tr>
<td>68515-73-1</td>
<td>Glucopyranose, oligomeric, decyl octyl glycosides</td>
</tr>
<tr>
<td>68411-30-3</td>
<td>Benzenesulfonic acid, C10-13-alkyl deris., Na salt</td>
</tr>
<tr>
<td>151-21-3</td>
<td>Sodium lauryl sulfate</td>
</tr>
<tr>
<td>9004-82-4</td>
<td>Polyoxy[1,2-ethanediyl), alpha-sulf-o-omegadecyloxy-, Na salt</td>
</tr>
<tr>
<td>1338-41-6</td>
<td>Sorbitan monostearate</td>
</tr>
</tbody>
</table>

Table 3 Chemical identity of available safer alternatives for NPEOs

25

20 Case studies on how to prevent the use of toxic chemicals frequently found in the Mediterranean Region
3. Bisphenol A-based Polycarbonate in Baby Bottles

Background, identity and use
Polycarbonate (PC) baby bottles are produced from bisphenol A (BPA) monomer used as building block for the PC polymer. Some BPA monomer remains as an impurity in the final product and migrates into baby food. Further BPA is generated and released from depolymerization upon continuous or frequent washing with detergents, sterilization and usage. BPA is a recognised endocrine disrupting chemical (EDC) causing estrogenic effects in vivo (xenoestrogen). The release from PC bottles can exceed the Tolerable Daily Intake (TDI) of 0.01 mg/kg body weight.

Bisphenol A (BPA) is one of the world’s best-selling chemicals, primarily used as monomer to make polycarbonate (PC) plastics.23 PC is used to produce baby bottles but also for other food contact materials, toys and a wide range of other applications. PC is characterised by its good physical properties such as transparency, high mechanical strength, wear resistance and good thermal stability such that it can be sterilized in boiling water. Therefore, for decades PC was a major material used globally and is still widely used for baby bottles in the Southern Mediterranean region.24

Hazard profile and problems
BPA is a well-described endocrine disruptor, causing reproductive, neurobehavioural, brain development, immune and metabolic system effects.25 Human exposure to BPA may elevate risk of obesity, diabetes and coronary heart diseases.26 BPA was also found to affect kidney and liver weight in animals.25,26 BPA enters the body through ingestion (e.g. diet, dust) or dermal contact (e.g., cosmetics, thermal paper). As is the case with most polymers, the non-polymerised residual BPA monomer can migrate from the PC material over the lifetime of the article. The amount of BPA present depends on the quality of the PC. It is sensitive to hydrothermal effects which results in additional BPA release from the polymer. The release rate of BPA originating from hydrolytic degradation of the polymer is positively correlated with higher pH (alkaline conditions).27 Therefore, the release of BPA from PC stems from two different mechanisms: (1) Diffusion-controlled release of residual BPA and (2) hydrolysis of the polymer at the material surface followed by an increase in BPA migration. The long-term release of BPA from PC is primarily due to degradation of the polymer rather than diffusion.27 Through these mechanisms, BPA can leach out of PC used in baby bottles and other food containers made of PC or other BPA-containing resins. The release from baby bottles can exceed the Tolerable Daily Intake (TDI) of 0.01 mg/kg of body weight.27

Status in the Mediterranean region and internationally
The European Union and Canada have banned BPA use in baby bottles. The US Food and Drug Administration (FDA) has ended its authorization for the use of BPA in baby bottles and infant formula packaging. With minor exceptions, legal or voluntary BPA restriction (including in PC baby bottles) is virtually absent in developing countries of Africa, SE

Table 4
Chemical identity of BPA and PC

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS/EC Number</th>
</tr>
</thead>
</table>
| 4,4’-isopropylidenediphenol (BPA) | CAS No: 80-05-7
EC No: 201-245-8 |
| Polycarbonate (PC) | CAS No.: 25037-45-0 |

Hazard profile

- GHS01 Explosive
- GHS02 Flammable
- GHS03 Oxidizing
- GHS04 Compressed Gas
- GHS05 Corrosive
- GHS06 Toxic
- GHS07 Harmful
- GHS08 Health hazard
- GHS09 Environmental hazard
- Carcinogenic/ Mutagenic/ reprotoxic
- Endocrine disrupting chemicals
- Persistent organic pollutant
Identification and availability
A range of materials are used as alternatives for polycarbonate baby bottles including other plastic, glass and stainless steel. The alternative plastic materials include polyamide (PA), polyethersulfone (PES), polypropylene (PP), polyethylene (PE) and copolyester.

Technical feasibility
A range of plastics are available on the market and have been used for baby bottles for many years, particularly in countries where PC has been phased out. Glass bottles were used before plastic bottles and can be appropriately used. Stainless steel baby bottles are also available on the market. Both these options are heavier and small babies might have difficulties holding the bottle. However, the World Health Organization (WHO) recommends exclusive breast feeding for the first 6 months and these bottles can be handled appropriately after this period, as they have been for generations.

Economic feasibility
Most non-BPA containing plastic bottles are price competitive with PC bottles. Glass bottles and stainless steel bottles have somewhat higher prices than PC baby bottles, however they can be used for a long time, even over generations. Some glass and stainless steel bottles have lids that can be switched out and can become a sippy cup, straw cup, or water bottle. Therefore, the price difference might be compensated by longer life cycle/durability.

Hazards, risks and life cycle considerations
Glass bottles do not release pollutants and are easy to clean. Stainless steel bottles are also easy to clean and do not release pollutants. Plastic bottles are more difficult to clean, as they have a tendency to scratch and can harbour bacteria if not properly cleaned.

The EU JRC laboratory detected a wide range of chemicals released into the milk substitute in an assessment of 449 alternative plastic baby bottles in the European market. BPA was detected and quantified in 20 out of 27 polyamide bottles, with concentrations ranging between 0.5 to 250 µg/kg in 19 bottles. One bottle released even more than 1000 µg/kg in the first migration. This value is higher than those found in the same survey for PC bottles. None of the 30 polyethersulphone (PES) bottles tested released any detectable amounts of 4,4'-dichlorodiphenyl sulphone (DCPS) or 4,4'-dihydroxydiphenyl sulphone (DHPS; bisphenol S) and only two bottles released a very low amount of diphenyl sulphone (DPS) (~1 µg/kg compared to a regulatory limit of 3000 µg/kg). The levels of contaminants found in polypropylene bottles were compliant with the limits set in the EU food contact legislation. No hazardous compound was detected in bottles made from copolyester.
4. Bisphenol A as a Developer in Thermal Paper

Background, identity and use
Bisphenol A (BPA) is a well-known endocrine disrupting chemical (EDC) with its major exposure pathway being through skin contact. BPA is a commonly used colour developer in thermal paper, found in tickets, receipts, sales slips etc. Therefore, human, including children’s, exposure to the chemical is widespread. The total human exposure to EDCs is of concern and unnecessary additional exposure needs to be avoided.

Alternatives are used in the European market and some of them have shown no EDC activity. By switching to these substances, EDC exposure can be reduced. The most suitable and most widely used alternative developer in thermal paper in the EU seems to be Pergafast 201, which has no estrogenic property and no documented other EDC activity. However, during the production, use and end of life treatment, the releases of Pergafast 201 to water bodies need to be controlled due the high aquatic toxicity of the chemical.

There is a recent innovative thermal paper namely Ökobon® that does not contain chemical developer. In this system the coating reacts to the heat of the thermal printhead. The paper is on the European market and used since the beginning of 2017.

BPA is used as a colour developer in printing thermal paper, at concentrations ranging from approximately 0.9 to 2.1%. Thermal paper is widely used in daily life and includes receipts, sales slips, cash register receipts, ticket papers, bank papers, fax paper, etc.

Hazard profile and problems
BPA is a well-described endocrine disruptor, causing reproductive, neurobehavioral, brain development, immune and metabolic system effects. Human exposure to BPA may elevate the risk of obesity, diabetes and coronary heart diseases. BPA was also found to affect kidney and liver weight in animals. BPA enters the body through ingestion (e.g., diet, dust) or dermal exposure (e.g., thermal paper, cosmetics). BPA applied to thermal paper is not bound, thus relatively large exposures may occur during normal handling. Skin absorption of BPA while handling thermal papers is believed to be a significant route of exposure, particularly for cashiers who have higher estimated levels compared to the general population. Due to the use of thermal paper in everyday life, most people are exposed to BPA, including children.

The European Food Safety Association (EFSA) estimate that the typical exposure to BPA is below its
20 Case studies on how to prevent the use of toxic chemicals frequently found in the Mediterranean Region

Identification and availability

Alternative developers in thermal paper

The chemicals identified by the SUBSPORT database (http://www.subsport.eu/) as potential alternatives to BPA in thermal paper, can be seen in Table 6.

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl bis(4-hydroxyphenyl) acetate (MBHA)</td>
<td>5129-00-0</td>
</tr>
<tr>
<td>4,4’-(1-phenylethyldene) bisphenol (Bisphenol AP)</td>
<td>1571-75-1</td>
</tr>
<tr>
<td>4-hydroxyphenyl sulfone (Bisphenol S)</td>
<td>80-09-1</td>
</tr>
<tr>
<td>4-[[1’-methyleneoxy] phenyl] sulfonyl] phenol (D-90)</td>
<td>191680-83-8</td>
</tr>
<tr>
<td>N-(p-Toluenesulfonyl)-N’-(3-p-toluenesulfonyloxyphenyl) urea (Pergafast 201)</td>
<td>232938-43-1</td>
</tr>
<tr>
<td>4-Hydroxyphenyl 4-isoproxyphenylsulfone (D-8)</td>
<td>95235-30-6</td>
</tr>
<tr>
<td>Bis(4-hydroxyphenyl)imethane (Bisphenol F; BPF)</td>
<td>620-92-8</td>
</tr>
<tr>
<td>Urea Urethane (UU)</td>
<td>321860-75-7</td>
</tr>
</tbody>
</table>

Table 6 Chemical alternatives to bisphenol A (US EPA 2014)a

Thermal paper without chemical developers

There is a recent innovative Oekobon® thermal paper (http://www.oekobon.com/), the first thermal paper that does not need a developer. Oekobon® was specially developed for this forward-looking type of thermal technology. In this system, the coating reacts to the heat of the thermal printhead. In contrast to existing thermal papers, it contains...
fine bubbles, which collapse due to selective heat transfer of the thermal printer. Through this purely physical reaction, the underlying black layer is made visible, thus creating the typeface on the receipt without a chemical developer. The paper is available on the market since 2017.

Technical and economic feasibility

- **Alternative developers in thermal paper**
 A range of developers (BPS, Pergafast 201, D-8, D-90, BPS-MAE) are already in use in several European countries (including Spain) and therefore have proven technical and economic feasibility. The alternatives are somewhat more expensive (by approximately 70%) compared to BPA-containing thermal paper. However, since thermal paper is a minor expense for a shop, the additional cost is insignificant, as demonstrated by the shift to alternatives in the EU.

- **Thermal paper without chemical developers**
 Oekobon GmbH offer Oekobon® thermal paper without developer as an innovative alternative. The paper can be used with the same equipment in the same way as the other thermal papers with developers. The system is stable against UV light with a lifetime of more than 25 years.

 Currently the price for this paper is approx. twice the price of BPA-containing thermal paper and comparable to thermal papers with alternative developers. Since thermal paper is a minor expense for a shop, the cost increase is also minor. Considering the lack of restriction of BPA in the Southern Mediterranean region, there is a need for raising awareness regarding BPA exposure of customers.

Hazards, risks and life cycle considerations

Some of the alternatives to Bisphenol A with similar structure have been found to also exhibit EDC properties (for example Bisphenol S, Bisphenol F). Therefore, these cannot be considered suitable alternatives. Pergafast 201, D-8, D-90, TGSA and BPS-MAE have shown no or minimal estrogenic activity. However, TGSA and D-8 induced similar teratogenic effects as BPA in zebrafish embryos.

Exposure and risk can also be reduced by minimizing the release of the compound from thermal paper. Of the above-mentioned alternatives, Pergafast 201 and Bisphenol AP have the lowest release potential. Also, in this respect Pergafast 201 seems a suitable alternative, though it has high aquatic toxicity that needs to be considered for the life cycle management of Pergafast 201 treated thermal paper. The releases of Pergafast 201 to water bodies should be controlled during the production and end of life treatment.
20 Case studies on how to prevent the use of toxic chemicals frequently found in the Mediterranean Region

5. Polyethylene Plastic Bags

Background, identity and use
Shopping bags have become an integral part of our everyday lives. Single-use polyethylene plastic bags are the most commonly used in many countries. Globally, millions of single-use plastic shopping bags are discarded every day into mixed-waste streams or are thrown into the environment as post-consumer plastic litter. The Mediterranean Sea coastline is littered every year with an estimated 25 million plastic bags per 1,000 kilometres of coastline. Plastic bags and packaging account for 56% of the total beached waste and 83% of floating litter. Traditional reusable bags made from alfa, cotton or jute are readily available on the market, as are paper and biodegradable plastic bags.

Plastic shopping bags have been used by consumers worldwide since the 1960s. The main plastics used are high density polyethylene (HDPE) and low density polyethylene (LDPE). The production monomer ethylene is derived from non-renewable natural gas and petroleum. Globally, millions of single-use plastic shopping bags are discarded every day into mixed-waste streams. We are therefore faced with the need of seeking an alternative to single-use plastic bags. Approximately 100 billion plastic bags are produced yearly and are placed on the market in the European Union (EU) alone. Plastic bags are widely used in Southern Mediterranean countries. For instance, Tunisians consume roughly one billion plastic bags each year, equalling 30,000 tonnes of plastic waste.

Hazard profile and problems
Plastic bags cause negative environmental impacts by becoming a post-consumer plastic litter source and due to their non-renewable resource consumption and chemical use (such as inks and other additives). Plastic bags are one of the most widespread waste types in oceans and seas, making up 75% of the plastic content of total marine litter. Plastic bags are harmful to the environment and to wildlife. They have been identified as the type of microplastic litter most harmful to marine biota, killing thousands of animals each year. Plastic might take hundreds of years to break down in the environment. Plastic bags can clog pipes and thus contribute to flooding in cities. Their pollution of landscapes in the Mediterranean region has caused economic damage to the tourism sector. Plastic waste recycling rates in the Mediterranean region are low due to a lack of household collection and segregation, commodity value volatility and competition for virgin plastic.

Status in the Mediterranean region and internationally
The United Nations Environment Assembly (UNEA) has recently adopted a resolution on

5. Polyethylene Plastic Bags

Hazard profile

- Explosive (GHS01)
- Flammable (GHS02)
- Oxidizing (GHS03)
- Compressed Gas (GHS04)
- Corrosive (GHS05)
- Toxic (GHS06)
- Harmful (GHS07)
- Health hazard (GHS08)
- Environmental hazard* (GHS09)
- Carcinogenic/ Mutagenic/ Reprotoxic (GHS10)

*Polyethylene is not classified as environmental hazard under GHS. However, it is very hazardous to the marine environment and to wildlife.
In the EU, plastic waste needs to be collected separately. The Circular Economy Action Package adopted in December 2015 makes plastics a priority topic. This Package proposes rising the recycling target for plastic packaging to 55% and reducing landfilling to no more than 10% by 2030. In 2015, the EU issued Directive 2015/720 to reduce the consumption of lightweight plastic carrier bags. Some Mediterranean countries (France and Morocco) are aiming for a total ban of plastic bags, apart from those that are biodegradable and compostable. Others such as Croatia, Malta, Israel and some municipalities or districts of Spain, Greece and Turkey, are introducing a tax on single use plastic bags. Tunisia has banned non-biodegradable plastic bags in large-chain supermarkets but still allows their use in small shops.

Selected alternatives to polyethylene plastic bags

Identification, availability, and technical feasibility

Environmentally friendly alternatives to non-degradable plastic bags include reusable bags from natural materials and biodegradable plastic or paper bags.

A) Reusable bags
Reusable bags include bags made from cotton, jute or alfa. The Tunisian “Koffa” (Figure 1) are traditional bags made of palm leaves or alfa (Stipa tenacissima), a common grass of North Africa that covers approximately 3 million hectares in Algeria and more than 400 thousand hectares in Tunisia. Organic cotton bags can also be a more sustainable alternative to non-degradable plastic bags, especially if the organic agriculture contributes to new fertile soil generation as demonstrated by the SEKEM farm in Egypt, which also produces organic cotton. Jute bags are another environmentally friendly alternative because the material derives from a plant fibre, consisting mostly of cellulose and is biodegradable after use.

B) Paper bags
Paper bags are made out of cardboard paper and are a commonly used alternative to plastic shopping bags for packaging fruits or bakery goods. Paper bags can also be produced from recycled paper; however, not all paper is suitable for being recycled into paper bags packaging food items due to possible problems with cross-contamination (i.e. chemical residues in the recycled paper that might lead to increased exposure of consumers).
C) Biodegradable plastic bags
Biodegradable plastic bags are another alternative to non-degradable plastic bags. They can be made from bio-based and biodegradable bioplastics such as polylactic acid (PLA), polyhydroxyalkanoates (PHA and PHB) and starch blends. Bags can also be made from fossil fuel-based biodegradable plastics such as polybutyrate adipate terephthalate (PBAT), polycaprolactone (PCL) and poly(butylene succinate) (PBS). PLA is a biodegradable and bio-active thermoplastic aliphatic polyester derived from corn starch, cassava roots, chips, starch, or sugarcane and the plastic bags take a few months to fully degrade when buried in compost.

PLA is a biodegradable and bio-active thermoplastic aliphatic polyester derived from corn starch, cassava roots, chips, starch, or sugarcane and the plastic bags take a few months to fully degrade when buried in compost.

However, biodegradable bioplastics and especially non-degradable bioplastics, such as bio-based polyethylene (PE), polyethylene terephthalate (PET) and Nylon (Polyamide; PA), do not have an advantage in respect to marine litter pollution, since biodegradation in this context is usually limited to industrial composting conditions (e.g. with temperatures much higher than in the natural environment, such as marine water). Hence, biodegradable plastic bag is a suitable alternative to non-degradable plastic bags when composted after use in order to effectively reduce marine litter pollution or ensuring that the bio-plastic degrade also under marine condition.

Policy makers, industry, retailers, entrepreneurs and consumers must all contribute to the switch to sustainable alternatives. Behavioural change toward the use of more sustainable shopping bags is of great importance. Consumers can reduce their plastic bags use through a variety of behaviours: bringing their own reusable bags (i.e., reduce and reuse), opting for a biodegradable bag (i.e., substitute), combining all their purchases into one biodegradable/reusable bag or adding to an existing bag received from another vendor (i.e., reduce). Municipalities can further help by enforcing that all biodegradable bags are composted to facilitate effective waste handling. Combining education on the impacts of shopping bags with general education on sustainable consumption can change consumer behaviour and considerably increase citizens’ environmental awareness.
6. PVC with DEHP in Medical Appliances

Background, identity and use
Soft PVC with DEHP (Bis(2-ethylhexyl) benzene-1,2-dicarboxylate) as softeners is the most widely used plastic in single-use medical devices. DEHP is classified as toxic to reproduction (class 1B) which means it may damage fertility and may damage the unborn child. A range of alternatives polymers to PVC in medical appliances without softeners are available and safe product alternatives have already been compiled e.g. by Health Care Without Harm. Also alternative softeners to DEHP with lower toxicity and leachability are available and used in medical devices. Soft PVC with DEHP (Bis(2-ethylhexyl) benzene-1,2-dicarboxylate) as softeners is used in single-use medical devices such as intravenous tubing and bags, IV catheters, nasogastric tubes, dialysis bags and tubing, blood bags and transfusion tubing and air tubes. These medical devices are used for screening, diagnosis, treatment and care. Medical PVC accounts for about 40% of all plastics-based medical devices used in hospitals.51

Hazard profile and problems of soft PVC/DEHP in health care products
DEHP is classified as toxic to reproduction (class 1B) which means it may damage fertility and may damage the unborn child.52 Based on the testicular toxicity of DEHP, the European Food Safety Authority (EFSA) Panel set a Tolerable Daily Intake (TDI) of 0.05 mg/kg body weight, based on a ‘No Observed Adverse Effect Level’ (NOAEL) of 5 mg/kg bw/day and an uncertainty factor of 100 used for the risk assessments.53 The EFSA TDI is significantly exceeded in patient groups due to exposure from DEHP containing PVC medical devices including adult patients undergoing haemodialysis and premature neonates in intensive care units. For adults, the highest acute-short term exposure may result from transfusions of blood components, reaching DEHP doses up to approximately 8,000-10,000 μg/kg body weight/day in trauma patients and in patients undergoing ECMO, whereas the highest chronic treatment is represented by haemodialysis, during which the maximum reported exposure is 2200 μg/kg/d.52 Premature neonates in intensive care units (NICU), being dependent on multiple medical procedures, may receive even higher DEHP exposures (up to 6000 μg/kg bw/d).52 Such exposures may occur for a period of weeks or even months with associated developmental risk.

Table 7 Chemical identity of DEHP (Bis(2-ethylhexyl) phthalate)

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP: Bis(2-ethylhexyl) benzene-1,2-dicarboxylate</td>
<td>CAS No. 117-81-7</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl) phthalate</td>
<td>EC No. 204-211-0</td>
</tr>
</tbody>
</table>

Hazard profile

- Explosive (GHS01)
- Flammable (GHS02)
- Oxidizing (GHS03)
- Compressed Gas (GHS04)
- Corrosive (GHS05)
- Toxic (GHS06)
- Health hazard (GHS07)
- Carcinogenic/Mutagenic/reprotoxic (GHS08)
- Environmental hazard (GHS09)
- Persistent organic pollutant (GHS10)
- Endocrine disrupting chemicals (GHS11)
Therefore soft PVC containing DEHP should be phased out in exposure relevant articles such as health care devices.54, 55, 56 Furthermore PVC can be a driver for Dioxin (PCDD/F) and other unintentional POPs formation in non-BAT incinerators.55 Hospital waste incinerators in Southern Mediterranean countries are normally small scale incinerators operated with daily start up or even as batch with bad combustion quality58 where PCDD/F formation correlates with chlorine/PVC content. Such hospital waste incinerators can have large impact on the surrounding.59 Furthermore hospital waste might be treated in cement kiln where chlorine content is a limiting factor for accepting and treating waste.60, 61

\textbf{Status in the Mediterranean region and internationally}

Several countries have already taken action62 including the EU which recently updated the regulatory framework for medical devices including the phase out of use of devices with EDC like DEHP (and CMR chemicals) above 0.1\%.63 DEHP is listed as Substance of Very High Concern under REACH and it is listed as endocrine disrupting chemical. The EU recently updated the medical devises regulatory framework. Annex I.II.10.4.1, of the MDR includes a 0.1\% concentration limit64 for category 1A and 1B carcinogenic, mutagenic and reprotoxic (CMR) substances and EDCs in devices that are invasive and come into direct contact with the body.55 In Denmark under the Danish PVC Tax Act (Law no. 253, of 19 March 2007), goods that contain phthalates are taxed based on the weight of phthalates they contain.65 This tax stimulated the use of alternatives. Between 1998 and 2011, the use of 17 different phthalates halved. At the request of the Danish Environmental Protection Agency (EPA), local and provincial authorities are giving priority to phthalate-free alternatives in all public procurements (Green Public Procurement).66 Over 100 healthcare institutions around the world are reducing or phasing out PVC and phthalates. In the South Mediterranean countries no substitution activity of medical devices containing PVC/DEHP have been conducted up to now. Also no regulations have been developed for restricting DEHP in medical devices. However, Egypt has restricted DEHP in toys and childcare items.

\textbf{Identification and availability}

\textit{1) Alternatives materials to PVC}

There are many non-PVC materials available, suitable for a wide variety of medical applications, which do not require phthalates or other softeners. These materials include polypropylene (PP), polyethylene (PE), other polyolefins, ethylene vinyl acetate (EVA) or silicone among others.66 Lists on non-PVC alternative have been compiled from Health Care Without Harm (HCWH) for the United States/Canada for general medical devices67 and for Neonatal Intensive Care Unit (NICU)68 or from Swedish authorities.66 Furthermore HCWH Europe has developed “The Safer Medical Devices Database” (http://safermedicaldevices.org/about) with currently approx. 200 alternative products to PVC medical devices.

Some major alternatives and use areas are:

- Bags: PVC-free bags made of ethylene vinyl acetate (EVA), multilayer polyethylene or polypropylene are cost-effective and technically competitive with PVC bags.
- PVC-free intravenous and other bags are available for all applications.
- Tubing: PVC-free tubing from polyurethane or silicone is on the market for most medical applications.
- Gloves: Alternatives made from nitrile for disposable gloves are readily available.
2) PVC with alternative plasticisers

PVC products softened with plasticisers other than DEHP are available on the market. The alternative softeners used include e.g. Hexamol DINCH (1,2-Cyclohexanedicarboxylic acid, diisononylester), DINP (di-iso-nonyl phthalate), TOTM (Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate), Citrates, Adipates, Trimellitates.52, 56

Technical feasibility

There are clinics, which have entirely substituted PVC with alternatives in invasive applications demonstrating the technical feasibility.69 Furthermore there are examples where clinics have gone nearly70 PVC free already a decade ago demonstrating that the substitution of PVC (including PVC/DEHP) is technically feasibility for hospitals.67 Medical device manufacturers in Europe generally offer both PVC and PVC-free versions of the same device. Also PVC with alternative softener (e.g. Hexamoll® DINCH® or DINP) are available since several years as alternatives in medical devices.66 Technically, DINCH® can be processed on existing machinery, requiring only minor adjustments in formulation and process parameters.71

Economic feasibility

Alternative material to PVC are normally more expensive than the PVC. How large a price difference, if any, depends greatly on national markets and the individual contracts between hospitals and suppliers. Hospitals can lower per-unit costs by purchasing in large volumes: Here price differences can be negotiated down to a minimum. The case of Denmark with ecological/health tax on DEHP and PVC was a driver for alternative products56 and could be assessed and considered for Mediterranean countries.

It needs to be stressed that there are often material benefits to alternatives. For example, PVC-free IV bags won’t stiffen with use, as softeners are not removed from the plastic by the bag contents. And while nitrile gloves are more costly than PVC they are also more durable.

The benefits to health can outweigh higher costs, especially when considering the long-term benefits for society at large. The total external health cost of DEHP use/exposure due to the endocrine effect is estimated to 16.2 billion Euro per year in Europe.72

The price for alternative softeners are mostly higher compared to DEHP (price 800 to 1300 USD/tonne). Cost of DINCH® (07/2017) is 3000 to 3500 USD/t. compared to phthalates.

Hazards, risk and life cycle considerations

A) Non PVC alternatives

Alternative polymers do not leach DEHP or other softeners. Major alternative polymers used (e.g. polypropylene, polyethylene, other polyolefins, ethylene vinyl acetate) have low or no release potential since they do not use softeners or other additives in high amount. Whenever possible, material with low release potential should be used.52 In the end of life these non-chlorinated polymers can be incinerated or thermally recovered without additional generation of dioxins.

B) Alternative softeners

For the alternative plasticizers, the critical endpoint for toxicity is generally different from reproductive effects. DINCH does not exert any reproductive toxicity, nor genotoxicity or carcinogenicity. The critical endpoint is the effects observed in kidney and are not considered as relevant for humans.

The GreenScreen™ assessment concluded a DINCH benchmark classification of 2e (Moderate Toxic) due to moderate Endocrine Activity, Skin Irritation and Persistence.73 Overall the substitution of PVC by other plastic with better life cycle performance (Figure 3) and chemical footprint properties is preferred. At the end of life, all PVC increase the potential of PCDD/F and other UPOP release in the non-BAT hospital waste incinerators in South Mediterranean countries and the chlorine content result in problems with co-incineration in cement kilns.
7. PVC in Toys and Childcare Products

Background, identity and use
Soft PVC in toys and childcare products can contain toxic additives including softeners such as phthalates and heavy metals (lead and cadmium). PVC toys lead to children’s exposure due to mouthing behaviour. The levels of hazardous chemicals ingested by the baby or child can exceed safe exposure margins. A range of alternatives to PVC toys are available, including other plastics or wood. Furthermore, a better alternative to plastic toys are books that encourage babies to interact with parents/caretakers and support language development at a young age, thus improving communication skills with long-lasting positive implications for overall academic success. Fewer toys and increased outdoor play time can reduce future consumption addiction.

Soft PVC toys are widely used including in teethers, pacifiers, doll parts, figurines and inflatible toys. Soft PVC contains up to 50% plasticizers by weight, usually phthalate esters such as bis (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP) and di-n-octyl phthalate (DNOP) (Table 8).

Hazard profile and problems
Soft PVC contains up to 50% plasticizers by weight, usually phthalate esters, which are not chemically bound to the plastic and therefore leach out. The phthalates most commonly used as softeners have hazardous properties (Table 9). Furthermore, lead, cadmium, barium/zinc, or organotin compounds are added to PVC as stabilizers. One study screened toys for heavy metals in Tunisia (2012) and found that numerous PVC toys contained high levels of lead and cadmium.75

Toys made of PVC put children at a risk of severe exposure, above safe levels, to softeners such as.

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS/EC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP; Bis[2-ethylhexyl] benzene-1,2-dicarboxylate</td>
<td>CAS No. 117-81-7</td>
</tr>
<tr>
<td>Bis[2-ethylhexyl] phthalate</td>
<td>EC No. 204-211-0</td>
</tr>
<tr>
<td>Dibutyl phthalate (DBP)</td>
<td>CAS No. 84-74-2</td>
</tr>
<tr>
<td></td>
<td>EC No. 201-557-4</td>
</tr>
<tr>
<td>BBP; Butyl benzyl phthalate</td>
<td>CAS No. 85-68-7</td>
</tr>
<tr>
<td></td>
<td>EC No. 201-622-7</td>
</tr>
<tr>
<td>DINP, diisononyl phthalate</td>
<td>CAS No. 28553-12-0; and 68515-48-0</td>
</tr>
<tr>
<td></td>
<td>EC No. 249-079-5</td>
</tr>
<tr>
<td>DIDP; diisodecyl phthalate</td>
<td>CAS No. 26761-40-0</td>
</tr>
<tr>
<td></td>
<td>EC No. 247-977-1</td>
</tr>
<tr>
<td>DNOP; di-n-octyl phthalate</td>
<td>CAS No. 117-84-0</td>
</tr>
<tr>
<td></td>
<td>EC No. 204-214-7</td>
</tr>
</tbody>
</table>

Table 8 Main phthalates used as plasticizers in soft PVC toys74
Selected alternatives to PVC in toys and childcare products

Identification, availability and technical feasibility
Several natural materials, such as organic textiles or wood, have traditionally been used to make toys, teethers and pacifiers. These materials are well tried and tested over the years, are usually durable and repairable and are available on the market. These materials are preferable to any petrochemical-based plastics because of the global environmental impacts of non-renewable fossil fuels. A wide range of toys made from wood or other plastics are on the market.

The main plastics that can be used instead of soft PVC in toys are thermoplastic elastomers (TPEs), ethylene vinyl acetate (EVA) and polyolefins (polyethylene/polypropylene). All three materials fulfill requirements for safety, ease of processing (if possible on the same equipment as PVC), aesthetic appeal and lessened environmental and health impacts. Bio-based plastics are also used for some toys. The first biodegradable plastics have been introduced for beach toys. Another solution is the overall reduction of toys by altering society’s consumption patterns. This approach is practiced in toy-free kindergartens in Germany and in the increasingly popular outdoor and forest kindergartens.
Furthermore, books are preferred alternatives to toys since, unlike plastic and electronic toys, they encourage interaction with parents/caregivers and support language development at a young age, thus improving communication skills with long-lasting positive implications for overall academic success. The increasing switch to books can contribute to the “Arab Regional Agenda for Improving Education Quality,” considering also early childhood development.

Economic feasibility

PVC is the cheapest plastic. Therefore, plastic toys made from alternative materials are somewhat more expensive. Considering the poor life cycle performance of PVC (Figure 3), the chemical footprint of PVC is high, leading to external costs. Books can be rented from libraries often for free.

Hazards, risks and life cycle considerations

Renewable materials such as organic textiles or wood are preferable to any petrochemical-based plastics because of the global environmental impacts of non-renewable fossil fuels.

Alternative plastics do not require phthalate plasticizers to become soft and flexible. All alternative plastics require smaller amounts of additives overall (0-2% of the polymer mixture) compared to soft PVC (up to 50%), resulting in much lower exposure potential. Furthermore, a ranking of plastics based on lifecycle considerations indicates that all other plastic types are better than PVC (Figure 3). Chemical footprint assessments for plastics lead to a similar conclusion.

The paper used in books is made from renewable resources and is ideally produced from certified wood. Books can be rented from libraries, further minimizing their ecological footprint.
8. Commercial Decabromodiphenyl Ether in Textiles

Background, identity and use
Decabromodiphenyl ether (DecaBDE) was listed in 2017 as a persistent organic pollutant (POP) under the Stockholm Convention with exemptions. DecaBDE is still used in the Mediterranean region, further generating POPs stockpiles which are difficult and expensive to manage in Southern Mediterranean countries that lack POPs destruction capacity. The use of DecaBDE in textiles can lead to human exposure to polybrominated diphenyl ethers (PBDEs) and brominated dioxins indoors and in cars. DecaBDE can be substituted in textiles by using alternative fibres or alternative flame retardants. Although some alternatives might be more expensive, the substitution is economically preferable when considering the high cost of end of life management of DecaBDE-containing waste.

Commercial decabromodiphenyl ether (c-DecaBDE) (see Table 10) was and possibly still is, a widespread flame retardant in textiles. The main textiles treated with c-DecaBDE appear to be used in commercial upholstered furniture, automotive and airplane upholstered furniture, curtains, drapery and mattress ticking, especially in hotels and other public buildings. Other niche applications include tents, awnings and related fabric applications. DecaBDE is typically applied to the back of textile fabric in a coating with antimony trioxide (ATO) synergist in an acrylic or ethylene-vinyl acetate copolymer. The DecaBDE back coatings can be used on a variety of fabrics including nylon, polypropylene, acrylics and other blends such as nylon–polyester.

Commercial DecaBDE (c-DecaBDE) consists predominantly of the congener BDE-209 (≥97%), with low levels of other polybrominated diphenyl ether (PBDE) congeners such as nonabromodiphenyl ether (0.3-3%) and octabromodiphenyl ether (0-0.04%). The sum of tri, tetra, penta, hexa and heptaBDEs present in the mixture is typically at levels below 0.0039% w/w.

Hazard profile and problems
DecaBDE can be released from textiles as (micro) fibres or as particles from back coating and can accumulate in house dust. Indoor exposure is a major human exposure pathway for PBDEs. Its exposure from textiles cannot be controlled or managed without product labelling, yet today DecaBDE-containing products are not labelled. DecaBDE is used with the synergist ATO, which is suspected of causing cancer by inhalation. Polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) are manufacturing impurities in c-DecaBDE. PBDD/Fs are also formed from DecaBDE throughout the life cycle due to thermal stress or UV exposure. High levels of PBDFs are detected in house dust, likely formed from PBDEs released from textiles (and possibly electronics) into the indoor environment.

According to the Stockholm Convention, DecaBDE-containing materials are not allowed for recycling and might impact the recycling of textiles. South Mediterranean countries currently either lack the destruction capacity for POPs waste or have very limited capacity. This leads to high management costs for highly halogenated waste, approximately 250 to 2000 USD/tonne depending on the halogen content.

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS/EC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decabromodiphenyl ether (DecaBDE)</td>
<td>CAS No: 1163-19-5</td>
</tr>
<tr>
<td></td>
<td>EC No: 215-693-7</td>
</tr>
</tbody>
</table>

Table 10: Chemical identity of c-DecaBDE and its main constituent, BDE-209
Status in the Mediterranean region and internationally

Following the listing of DecaBDE in Annex A of the Stockholm Convention with a range of exemptions, Parties to the Convention have the obligation to take measures to manage the production and use of DecaBDE at national level. If requiring exemptions, the Parties must assess the most appropriate and feasible alternatives to DecaBDE. Countries from the Mediterranean region asked for exemptions for DecaBDE use as flame retardants at the Conference of the Parties 2017.

In February 2017, c-DecaBDE was included under REACH in Annex XVII to Regulation (EC) No 1907/2006. The US EPA believes that DecaBDE domestic manufacturers and importers have voluntarily phased out c-DecaBDE. In May 2017, DecaBDE was listed as a POP in the Stockholm Convention in Annex A, with a range of exemptions. In 2012, the EU still imported 4133 tonnes of DecaBDE. Turkey and Italy are among the countries using DecaBDE (see Table 11). Italy accounted for the majority of DecaBDE imports to the Mediterranean region (732 tonnes), with minor imports also in France, Spain and Greece.93 8.5 tonnes of DecaBDE were exported from the EU to Turkey in 2012. Former DecaBDE exports from the EU to Tunisia and Morocco were also reported. This indicates that DecaBDE is used in the Mediterranean region and textiles are likely a major use.

The African Mediterranean countries lack measurement and tracking capacity for DecaBDE. Therefore, there is no or very limited control for products in the market. Given the lack of control and destruction capacity, environmentally sound management is currently unfeasible in the region.

Table 11: Eurostat data on EU27 DecaBDE imports (tonnes) for the years 2000–2012

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Belgium</th>
<th>Germany</th>
<th>UK</th>
<th>Ireland</th>
<th>Italy</th>
<th>Netherlands</th>
<th>Other</th>
<th>All EU Member States</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>6,935</td>
<td>415.5</td>
<td>1968.5</td>
<td>1583.6</td>
<td>262</td>
<td>37.2</td>
<td>15.3</td>
<td>11,290</td>
</tr>
<tr>
<td>2004*</td>
<td>6,354</td>
<td>205.1</td>
<td>1799.6</td>
<td>1244.7</td>
<td>839.8</td>
<td>88.8</td>
<td>92.6</td>
<td>10,624</td>
</tr>
<tr>
<td>2008</td>
<td>5,145</td>
<td>271.6</td>
<td>983.1</td>
<td>21.7</td>
<td>2470.2</td>
<td>787.1</td>
<td>209.3</td>
<td>9,888</td>
</tr>
<tr>
<td>2012</td>
<td>2,352</td>
<td>183.7</td>
<td>86</td>
<td>5.4</td>
<td>732.1</td>
<td>634.2</td>
<td>139.1</td>
<td>4,133</td>
</tr>
</tbody>
</table>

*Eight central and eastern European countries – the Czech Republic, Estonia, Latvia, Lithuania, Hungary, Poland, Slovenia and Slovakia – joined the EU. Cyprus and Malta also became members. “Other” include: Bulgaria, the Czech Republic, Denmark, Spain, Finland, France, Greece, Hungary, Poland, Romania, Sweden, Slovenia and the Slovak Republic.

Selected alternatives to c-DecaBDE flame retardants in textiles

Identification and availability

Different flame retardants, fibres and barriers are available as DecaBDE alternatives for textile applications. Different technologies should be selected depending on the application.

A) Alternative fibres

Inherently fire-resistant fibres, such as aramid fibres, can be used as alternatives to DecaBDE-treated synthetic fibres that require high durability. Some synthetic fibres are made inherently-fire resistant by applying non-halogenated additives during the melt spinning process, such as the use of phosphorus-based additives in polypropylene and polyester fibres. Natural fibres can be fire-resistant without halogens, such as wool, with a high ignition temperature of 570 to 600°C and a high Limiting Oxygen Index of 25. For other applications, natural fibres alone might be sufficient to meet flammability standards. For instance, mattresses from Coco-mat (www.coco-mat.com) made only from natural fibres meet...
flammability standards of European hotels96 and the stringent flammability standards in the US.97 Also, Cottonsafe9 mattresses made only from cotton and other natural materials meet the stringent UK standards.98 Cotton might substitute some of the synthetic fibres or blends in some products and need less flame retardants or, for some application like mattresses or furniture, no added flame retardants at all.98

B) Alternative flame retardants

Several chemically-applied DecaBDE substitutes are commonly available on the market if natural cellulosic fibres such as cotton, wool, rayon and linen need additional treatment. The most common non-halogenated DecaBDE substitutes for cellulosic materials include dimethylphosphono (N-methylol) propionamide (phosphonic acid) and tetrakis (hydroxymethyl) phosphonium salt (or chloride) compound with urea.94 For synthetic fabrics such as acrylic, acetate, nylon and polypropylene, another halogenated flame retardant may be used, such as DecaBDPE (CAS No 84852-53-9) in an acrylic polymer coating. For polyester, which accounts for 30\% of world fibre production, the most common non-halogenated flame retardant is polyethylene terephthalate with built-in phosphorus on the polyester. This modified polyester is used in the majority of textile applications, is wash-resistant and is thought to be a good substitute for the DecaBDE/antimony flame retardants.

C) Fire barriers

Manufacturers use fire barrier technologies between the surface fabric and the interior foam core in furniture and mattress construction. Manufacturers also thermally or mechanically bind flame-retardant laminates to the back of fabrics to achieve compliance with fire standards.94 However, while barriers can be regarded as alternatives to flame retarded textiles from the point of view of furniture manufacturers, they are not alternatives for the textile industry. Therefore, this technology is not evaluated in this assessment.

Technical feasibility

The individual technologies listed above were already in use in 200594, proving the technical feasibility of alternative fibres and flame retardants. These technologies were or continue to be applied in countries with more stringent flammability standards such as the US. Therefore, they can be applied in the Mediterranean region, which typically has less stringent flammability standards, including in products intended for export to countries with more stringent flammability standards. However, more stringent flammability standards do not necessarily mean higher safety.99 Sometimes these flammability standards lead to the use of more flame retardants without a significant safety gain but with higher exposure risk100 and fire toxicity.98 Some of the DecaBDE chemical substitutes available on the market have limited durability due to their water solubility and tendency to wash out during laundry.94 In these cases, dry cleaning may be required.

Economic feasibility

When estimating the cost of alternatives, the end of life treatment options and cost of DecaBDE-containing waste need to be considered. Currently, North African countries do not incinerate waste containing DecaBDE or other brominated flame retardants (BFR) due to their limited waste destruction capacity. Energy recovery in cement kiln is an option in these countries but needs further assessment with respect to bromine accumulation.101 The POPs waste might need to be exported with associated high management cost for this highly halogen containing waste (approximately 250 to 2000 USD/tonne depending on the halogen content). Considering that one tonne DecaBDE impacts 10 to 20 tonnes of textiles, the environmentally-sound management of 1 tonne of DecaBDE in treated textiles can cost 5,000 to 40,000 USD.

A) Alternative fibres

Aramid fibres are patented (e.g. Keflar and Twaron) and in the higher price tier (8 to 40 USD/m2). Natural fibres such as wool are produced in the region and might be relatively cheap. The production of sheep wool
in Europe exceeds demand and sometimes become waste. Recycling this waste wool might be a business opportunity and the material might meet the flammability requirements for a range of applications. The production of organic cotton saves 3 tonnes of CO₂ per hectare, but these benefits are currently not included in cost calculations. Organic cotton is currently more expensive compared to conventional cotton or to cheap synthetic fibres like polyester but might become price-competitive under the regulatory framework proposed in the Action Plan for Sustainable Consumption and Production.¹⁰²

B) Alternative flame retardants

Brominated flame retardant: Decabromodiphenyl ethane (DecaBDPE)
The price of DecaBDPE (4500 to 5500 USD/tonne) exceeds that of DecaBDE (1300 to 2500 USD/tonne). Due to their similar structure, DecaBDPE needs to be used in the same amount as DecaBDE to flame retard textile, thereby increasing the overall product cost. The halogen content of the impacted waste will also lead to high waste management costs that need to be considered.

Non-halogenated flame retardants
Non-halogenated flame retardants are somewhat more expensive compared to DecaBDE. However, the end of life management of non-halogenated waste has no additional cost. Therefore, the overall life cycle cost of these alternatives is likely lower compared to DecaBDE and other halogenated flame retardants.

Organic agriculture has resulted in the generation of fertile soil in Egypt, which is extremely important considering that fertile soil is a scarce in all Mediterranean countries (with the exception of France) to sustain the local food consumption. Furthermore, considering that North Africa and the Middle East might become partly inhabitable within the next 50 years due to climate change, greenhouse gas emission is a high priority and needs to be appropriately assessed when considering external costs in the region.

Hazards, risks and life cycle considerations

A) Alternative fibres
Natural fire-resistant fibres like wool usually do not pose unacceptable risks during product life cycle, including during end of life management. Industrial cotton production involves the use of high amounts of synthetic pesticides and can lead to worker and environmental exposure.¹⁰³ However, while in the production of organic cotton and other organic fibres the use of pesticides based on naturally occurring chemicals (e.g. nicotine) is common, associated exposures are usually lower as compared to synthetic pesticides. Organic agriculture can contribute to CO₂ sequestration in soil and to production of new fertile soil as demonstrated by the SEKEM farm in Egypt,¹⁰⁴ which also produces organic cotton.¹⁰⁵

B) Alternative flame retardants
The hazards and risks of flame retardant substitutes vary. Fire toxicity can increase due to the use of flame retardants.¹⁰⁶, ⁹⁸ DecaBDPE has a high bioaccumulation factor (1000 – 5000)¹⁰⁷ and high persistence.¹⁰⁷ While BFRs are effective flame retardants, in case of fires they can increase fire toxicity by forming CO, HBr and PBDD/Fs.⁹⁸, ¹⁰⁶ DecaBDPE is also used with the synergist ATO suspected of causing cancer by inhalation. This needs to be considered for the plastic manufacturing. Currently, BFR-containing plastic waste is separated and not recycled in the EU due to the RoHS restriction. Instead, it needs to be properly destroyed. Some chlorine-containing phosphorous flame retardants (PFRs) are considered carcinogenic,¹⁰⁸ and some have other negative human health effects similar to trichloropropane (TCP), which suggest that they would not be suitable alternatives for BFRs.

From an environmental perspective, resorcinol-bis(diphenylphosphate) (RDP), bisphenol-A diphenyl phosphate (BADP) and melamine polyphosphate could be good alternatives to BFRs.¹⁰⁸
9. Short-Chain Chlorinated Paraffins as Metal Working Fluids

Background, identity and use
Short-chain chlorinated paraffin (SCCPs) have been listed under the Stockholm Convention in May 2017, with a range of exemptions including metal working fluids (MWFs). MWFs are a major use of SCCPs to lubricate parts that experience extreme pressures and are used in deep drawing, tube bending, cold heading or cutting and grinding and as coolants in metal processing. More than 90% of SCCPs from MWF use are released into the environment. This use of SCCPs has already been restricted in the EU since the 1990s and was stopped in 2004. Alternatives have been used for over 20 years, including a range of environmentally adapted lubricants (EALs) with high biodegradability and low toxicity such as vegetable oil-based lubricants, sulfur-, nitrogen- and phosphor containing oils, mineral oils and their mixtures. Short-chain chlorinated paraffins (SCCPs) are one of the most common metal working fluids (MWF), used as lubricants and coolants in metalworking fluids. Back in the 1990s when SCCPs were still allowed in Europe, MWFs were a major use. In general, lubricants are designed to lubricate parts that experience extreme pressures and are used in deep drawing, tube bending, cold heading and as cutting oils. The application for metal processing has been listed as exemption to the Stockholm Convention and can therefore continue.

Hazard profile and problems
CCPs are persistent chemicals that bioaccumulate and have toxic properties and were therefore listed as persistent organic pollutants (POPs) in Annex A of the Stockholm Convention in May 2017. SCCPs are classified as toxic to aquatic organisms and carcinogenic to rats and mice. SCCPs (average chain-length of C12, chlorination degree 60 wt%) were categorised in group 2B as possibly carcinogenic to humans by the International Agency for Research on Cancer (IARC).

The use of SCCPs as MWF leads to workers’ exposure to the fluids by breathing aerosols generated in the machining process, or through skin contact when handling parts covered with the fluids. More than 90% of SCCPs from MWF are released into the environment. SCCPs from MWF might also contaminate consumer products containing metal parts. The widespread use of SCCPs in consumer products results in contamination of the indoor environment. Recent studies also showed high SCCP levels in human milk and biota.

According to Stockholm Convention, SCCP-containing materials are not allowed to be recycling. SCCP oils might contaminate and hinder waste oil recycling.

Currently, South Mediterranean countries either lack the destruction capacity for POPs waste, or have only very limited capacity. Therefore, SCCP-containing waste might need to be exported. This

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS Number*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUPAC: Alkanes, C10-13, chloro</td>
<td>CAS No. 85535-84-8; CAS No. 88920-70-7; CAS No. 71011-12-6; CAS No. 85536-22-7; CAS No. 85681-73-8; CAS No. 108171-26-2.</td>
</tr>
<tr>
<td>Short-chain chlorinated paraffins (SCCPs)</td>
<td></td>
</tr>
</tbody>
</table>

*These CAS numbers can contain short chain chlorinated paraffins

Table 12 Chemical identity of short-chain chlorinated paraffins (SCCPs)
leads to high management and destruction costs for highly halogenated waste, approximately 500 to 2000 USD/tonne depending on the halogen content.

Status in the Mediterranean region and internationally
Following the listing of SCCPs in Annex A of the Stockholm Convention with a range of exemptions, all Parties to the Convention have the obligation to take measures to manage the production and use of SCCPs at national level. This includes taking legislative and regulatory actions, inventorying and managing stocks and waste. If requiring exemptions, the Parties must assess the most appropriate and feasible alternatives to SCCPs.

SCCPs have been listed in the EU POP Regulation since 2004. This prohibits the production, placing on the market and use of SCCPs, of preparations containing SCCPs in concentrations greater than 1% by weight and of articles containing SCCPs in concentrations greater than 0.15% by weight. These restrictions place limit the presence of SCCPs in products (1.0%) and articles (0.15%). Since May 2017, SCCPs are listed as POPs under the Stockholm Convention (Annex A).

When SCCPs were listed in the Stockholm Convention, developing countries including countries from the Southern Mediterranean region requested a range of exemptions such as the use as MWF. This indicates that SCCPs are likely used in the Mediterranean region for this purpose.

Since the amendment enters into force only in 2018 and compliance is required only by 2020, SCCPs are still used as MWF without restriction.

South Mediterranean countries lack the capacity to measure SCCPs, therefore there is little to no control as to the chain length (short versus medium) of chlorinated paraffins on the market. Considering the lack of regulatory and monitoring control and destruction capacity, an environmental sound management is currently not feasible in the region.

Identification and availability
For the substitution of SCCPs in MWF, a range of environmentally adapted lubricants (EALs) have been developed and are already in use. EALs have been defined under the EU draft ecolabel as lubricants with high biodegradability, low toxicity and performance equal to or better than conventional alternatives. Several EALs, including vegetable oil-based (oleochemical) ingredients can be used in traditional water-based and straight-oil formulations in place of SCCPs. Medium-chain chlorinated paraffins (MCCPs) and long-chain chlorinated paraffins (LCCPs) are also used as alternatives to SCCPs. Other alternative processes and emerging processes include dry machining, which requires no cutting fluid and cryogenic machining, which uses liquefied gases.
Technical feasibility

Since alternatives have replaced SCCPs for more than 20 years in many countries, their use has already been optimized for these applications. The technical suitability of alternative chemicals and processes depends on the requirements of each specific process. Alternative MWFs may not be suitable for all applications or processes. Knowledge transfer is important and should be considered in the implementation of the Stockholm Convention.

Currently, most South Mediterranean countries lack the destruction capacity for halogenated POPs waste. Therefore, these countries cannot manage SCCPs at the end of life and their use eventually leads to environmental contamination at the site of use or waste disposal. The end of life management of alternatives MWF such as vegetable oils and mineral oils is technically feasible in these countries since these oils can be incinerated in boilers or cement kilns and vegetable oils degrade when released into the environment with consideration for BOD/COD limits.

Economic feasibility

There is limited information regarding pricing of individual alternatives. Since SCCPs have been substituted for the past 20 years in many countries, the alternatives are commercially available and economically feasible in many regions, including the EU.

SCCPs are very cheap MWFs, so alternatives are normally more expensive. SCCPs might even be cheaper compared to mineral oil-based MWFs, since mineral oils are often subjected to tax. To fully understand the price competitiveness of alternatives, the external costs of SCCP use, including environmental costs, need to be added on using taxes or similar policies. An environmentally sound management of SCCP-containing waste must be required and implemented, including wastewater treatment and management/destruction of impacted sludge and other waste. Since such destruction capacity is currently lacking in most of these countries, this might require expensive export of SCCP waste. Furthermore, the cost of the negative impact on waste oil recycling must be considered and included in the pricing. Considering all these external cost factors, the alternatives should be cheaper or at least price competitive.

Hazards, risk and life cycle considerations

A) Environmentally adapted lubricants (EALs); bio-based oils
Bio-based formulations have the potential to reduce waste treatment costs of MWF effluents. Bio-based oils have the smallest occupational health risks compared to other MWFs if bacteria are controlled. Compared to petroleum-derived cutting oils-containing CP additives, vegetable-based alternatives such as non-chlorinated canola, sunflower and soybean oils provide better heat dissipation and produce less smoke during machining.

B) Mineral oil-based alternatives
Mineral oil-based MWFs can also lead to environmental contamination if not properly managed.

C) Sulfur-, nitrogen- and phosphorus-containing oils
Sulphur-, phosphorus- and nitrogen-based compounds have specific applications as MWFs. They form diverse lubricant groups with specific uses and have substituted SCCPs in most applications.

D) MCCPs and LCCPs
MCCPs and LCCPs are also persistent and might accumulate in the environment. MCCPs are accumulating in biota including human milk. Waste containing MCCPs or LCCPs is also difficult to manage in Southern Mediterranean countries. Therefore, these alternatives are not recommended.
10. Commercial Decabromodiphenyl Ether in Plastic Electronics and Transportation

Background, identity and use
Decabromodiphenyl ether (DecaBDE) was listed in 2017 as a persistent organic pollutant (POP) under the Stockholm Convention, with exemptions including plastic housings in certain electronics, such as plastic parts used for heating home appliances, irons, fans, immersion heaters and other plastic parts in vehicles and aircrafts.

Better alternatives are available, including flame retardants, materials and re-designed electronics. Suitable alternative flame retardants must not be toxic or increase fire toxicity in case of a fire event. Commercial decabromodiphenyl ether (c-DecaBDE) (see Table 13) has been a widely used flame retardant in electronics. c-DecaBDE consists predominantly of the congener BDE-209 (≥97%), with low levels of other PBDE congeners such as nonabromodiphenyl ether (0.3-3%) and octabromodiphenyl ether (0-0.04%). In plastic it is normally used with Antimony(III) oxide (ATO) as synergist.

Hazard profile and problems
DecaBDE can be released from electronics or building materials and accumulate in house dust. Indoor exposure is a major human exposure pathway for PBDEs. Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) are manufacturing impurities in c-DecaBDE. PBDD/Fs are also formed from DecaBDE throughout its life cycle due to thermal stress, non-BAT (best available techniques) incineration, or UV exposure. High levels of PBDFs are detected in house dust, likely formed from PBDEs released from electronics, building materials and textiles into the indoor environment. DecaBDE is used with the synergist antimony trioxide (ATO), which is suspected of causing cancer by inhalation. The use of DecaBDE in plastic is difficult to control or manage in products that are normally not labelled. DecaBDE has been found in recycled food contact materials such as kitchen tools or coffee cup lids. According to the Stockholm Convention, DecaBDE-containing materials must not be recycled and hinder the recycling of plastics from electronics.

Southern Mediterranean countries currently either lack the destruction capacity for POPs waste, or have

CHEMICAL	CAS/EC Number
Decabromodiphenyl ether (DecaBDE)	CAS No: 1163-19-5
EC No: 215-693-7	
Antimony trioxide (ATO); Antimony(III) oxide: Sb$_2$O$_3$	CAS No: 1309-64-4
EC No: 215-474-6	

Table 13 Chemical identity of c-DecaBDE and its Antimony(III) oxide (ATO) synergist
very limited capacity. Therefore, POPs-containing waste might need to be exported, leading to high management costs for highly halogenated waste, approximately 250 to 2000 USD/tonne depending on the halogen content.

Status in the Mediterranean region and internationally

Following the listing of DecaBDE in Annex A of the Stockholm Convention, all Parties have the obligation to take measures to manage its production and use at national level. This includes taking legislative and regulatory actions, carrying out inventories and managing stocks and waste. If requiring exemptions, the Parties must assess the most appropriate and feasible alternatives to DecaBDE. Countries from the Mediterranean region asked for exemptions for DecaBDE use as flame retardants at the Conference of the Parties 2017. EU import and export data indicate its use in the Mediterranean region (see chapter 8 and Table 11). The EU stopped the use of DecaBDE in new electronics in 2008 through the Restriction of Hazardous Substances (RoHS) Directive. C-DecaBDE has been included under REACH in Annex XVII to Regulation (EC) No 1907/2006 in February 2017. The US EPA believe that domestic manufacturers and importers have voluntarily phased out C-DecaBDE.

Selected alternatives to DecaBDE in plastic electronics and transportation

<table>
<thead>
<tr>
<th>RESIN SYSTEM</th>
<th>Flame retardant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blends of high impact polystyrene and polyphenylene oxide (HIPS/PPO)</td>
<td>Resorcinol bis diphenyl phosphate (RDP)</td>
</tr>
<tr>
<td>Blends of polycarbonate and acrylonitrile-butadiene-styrene (PC/ABS)</td>
<td>Bisphenol A diphenyl phosphate (BPADP)</td>
</tr>
<tr>
<td>Polycarbonate (PC)</td>
<td>Phosphate esters</td>
</tr>
<tr>
<td>Polylactide (PLA)</td>
<td>Metal hydroxide</td>
</tr>
</tbody>
</table>

Table 14 Alternative resin systems with non-halogenated flame retardants[^130][^131]

Identification, availability and technical feasibility

Alternatives to DecaBDE in plastic housings are available and have been used for more than 10 years, ever since DecaBDE was banned in electronics in the EU. Some producers stopped the use of C-DecaBDE in the early 2000s, even before the regulations were established. Therefore, alternatives are available and have proven their technical feasibility for more than a decade. Substitution can occur at three levels: product redesign, material substitution and substitution of the flame retardant only (Figure 4).[^130][^131]

A) Flame retardant substitution

DecaBDPE (CAS No 84852-53-9) is a major substitute for DecaBDE as a flame retardant in all plastic applications, including the cheap and frequently-used high impact polystyrene (HIPS). A range of other brominated flame retardants are also used.[^132]

B) Material (and flame retardant) substitution

The most cost-effective non-halogenated substitutes involve changing the resin system and using phosphorous-based flame retardants. Of these three replacement systems, only HIPS/Poly(p-phenylene oxide) (PPO) is 100% halogen-free. The polycarbonate (PC) / acrylonitrile butadiene styrene (ABS) and PC systems typically contain a very small amount of fluoropolymer (roughly 0.3%) for drip resistance. Other alternatives such as metal or wood are possible but not widely employed due to cost and performance issues.

C) Product redesign

Electronics could be redesigned to separate the voltage supply or the heat supply from ignitable plastics. Shielding the power supplies with metal components lowers flame retardancy requirements, making flame...
Case studies on how to prevent the use of toxic chemicals frequently found in the Mediterranean Region

Economic feasibility

DecaBDPE
The price for DecaBDPE (4500 to 5500 USD/tonne) exceeds that of DecaBDE (1300 to 2500 USD/tonne). DecaBDPE needs to be used in the same amount as DecaBDE, thereby increasing the overall product costs. When calculating the cost over the entire life cycle, the price of managing halogen-containing waste needs to be considered, as well as the difficulty of treating such waste in the Southern Mediterranean countries.

Polymers with non-halogenated flame retardants
The price of the polymer alternatives with non-halogenated flame retardants is 40 to 100% higher compared to the cheap DecaBDE-containing HIPS polymer, resulting in 1.5 to 2.5% higher product cost. However, the life cycle cost of the alternatives is lower considering their recyclability versus the high cost of environmentally sound management of DecaBDE-containing waste. Waste management cost savings make up for the slightly higher price of the alternatives.

Hazards, risks and life cycle considerations

DecaBDPE
DecaBDPE has a high bioaccumulation factor (1000 – 5000) and very high persistence. DecaBDPE is also used with the synergist ATO, which is suspected of causing cancer. Currently, BFR-containing plastic is separated and disposed of but not recycled due to the RoHS restriction and Stockholm Convention listing of PBDEs. While BFRs are effective flame retardants, they can increase fire toxicity in the case of fires (CO, HBr, PBDD/Fs).

Polymers with non-halogenated flame retardants
These polymers (Table 14) have superior end of life performance. The ability to separate phosphorus flame retardants (PFR)-containing plastic for recycling has been demonstrated at full scale for PC/ABS. The flame-retarded polylactic acid composite bioplastic contains >75% plant-derived polylactic acid. It has appropriate durability, chemical resistance, light resistance and surface hardness.
11. Short Chain Chlorinated Paraffins in Fatliquoring in Leather

Background, identity and use
The short chain chlorinated paraffins (SCCP) have been listed in Annex A of the Stockholm Convention with specific exemptions. One of the specific exemptions is for the production and use of SCCP in leather industry, in particular fatliquoring in leather.136 This is an open application with related exposure to workers and consumers and has been restricted in the EU since the 1990s. Better alternatives are available including natural oils such as vegetable oil and fish oil. From life cycle assessment the use of vegetable oils is preferred. SCCPs are chlorinated paraffin mixtures (Table 15) that are viscous, colourless or yellowish dense oils.137 SCCPs were and continue to be, used primarily as metalworking fluids and additive in PVC plastics or rubber.138 The application for fatliquoring of leather has been listed as an exemption in the Stockholm Convention136 and therefore its use is likely to continue in the future unless more environmental friendly alternatives are promoted.

Hazard profile and problems
SCCPs are persistent chemicals which bio-accumulate and have toxic properties and were therefore listed in Annex A of the Stockholm Convention as POPs in May 2017.138 In mammals, SCCPs affect the liver, the thyroid hormone system and the kidneys.138 SCCPs are particularly toxic to aquatic invertebrates and are endocrine disrupting substances.138 They are also proved to be and carcinogenic to rats and mice. SCCPs (average chain-length of C_{12}, chlorination degree 60 wt%) were categorised in group 2B as possibly carcinogenic to humans from the International Agency for Research on Cancer (IARC). They are also present in human breast milk both in temperate and Arctic populations.138 Environmental releases occur during production, use, service-life and disposal of SCCPs and SCCPs containing products. Their wide industrial applications have provided a major source of environmental contamination.138 Their use in leather fatliquoring leads to exposure of workers to the fluids through skin contact when they handle the fluids and the leather. Also consumers can be exposed to SCCP from treated leather.138 The wide use of SCCP in consumer products results in contamination of indoor environment.139 According to the Stockholm Convention SCCP containing materials are not allowed for recycling as they might contaminate and hamper leather recycling in future.

Currently the destruction capacity for POPs waste in Southern Mediterranean countries does not exist or exists only to a very limited extent. Therefore POPs waste containing SCCP might need to be exported with associated high management and destruction costs for highly halogenated waste (approx. 500 to 2000 USD/tonne depending on the halogen content).

Status in the Mediterranean region and internationally
As with all Stockholm Convention listed items, the obligations remain the same as regards to taking the appropriate measures to tackle the issue. The use of SCCPs have been restricted by Canada, EU, Norway and the United States for more than a decade.140 They were initially regulated at the EU level in 2002 in Directive 2002/45/EC amending Council Directive 76/769/EEC, restricting their use in concentrations
>1% for applications in metalworking and fat liquoring of leather. SCCPs have been restricted by the POP Regulation since their listing in Annex 1 of the regulation in 2012 (Commission Regulation (EU) No 519/2012) which generally allows low concentrations in substances and preparations (1%). Furthermore, the Regulation provides for a general exemption from control measures if a substance occurs as an unintentional trace contaminant. This exemption would apply to SCCPs present as unintentional contaminants in MCCPs.\(^{141}\)

Table 15 Chemical identity of short-chain chlorinated paraffins (SCCPs)

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS Number*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUPAC: Alkanes, C10-13, chloro</td>
<td>CAS No. 85535-84-8; CAS No. 68920-70-7; CAS No. 71011-12-6; CAS No. 85536-22-7; CAS No. 85681-73-8; CAS No. 108171-28-2.</td>
</tr>
<tr>
<td>Short chain chlorinated paraffins (SCCP)</td>
<td></td>
</tr>
</tbody>
</table>

*These CAS numbers can contain short chain chlorinated paraffins

Selected alternatives to short chain chlorinated paraffins in fatliquoring in leather

Identification, availability and technical feasibility

Potential alternative substances available are:\(^{142}\)

A) Animal and/or vegetable oils

Animal and vegetable oils are technically feasible and commercially available and have been used as leather fat for long time in fatliquoring leather even before the use of SCCPs. In particular refined fish oils have been used in the past.

B) Mineral oils

Mineral oils are available as highly refined oils or lower grade oils.

C) Long-Chain Chlorinated Paraffins (C18+) (LCCPs)

This potential alternative is technically feasible and commercially available.

Economic feasibility

All alternatives are economic feasible. It is likely that the alternatives are approx. 15% more expensive than SCCPs but this higher cost is considered to be negligible.

Hazards, risks and life cycle considerations

- **Animal and vegetable oils:**
 Animal and vegetable oils are non-toxic and do not bioaccumulate. Considering life cycle assessment vegetable oils are more sustainable compared to fish oils.\(^{143}\)

- **Mineral oils:**
 Highly refined mineral base oils have low acute toxicity by ingestion and skin contact. They can cause slight skin and eyes irritation. Less refined oils might contain polycyclic aromatic hydrocarbons (PAH); some are known carcinogens. Mineral oil is harmful to aquatic life. Mineral oil has the potential to bioaccumulate.\(^{144}\)

 US EPA states that C\(_{18-20}\) (40-55 wt% Cl) are persistent to very persistent; higher chlorination can contribute to greater persistence under most environmental conditions and are potentially bioaccumulative. They also may cause long-term adverse effects in the aquatic environment.\(^{145}\)

- **Long-Chain Chlorinated Paraffins (C18+) (LCCPs):**
 Canadian assessment concluded that LCCP (C\(_{18-20}\)) are highly persistent and bioaccumulative and toxic to aquatic species at low concentrations. LCCPs with more than 20 carbons were found to be persistent but not bioaccumulative.\(^{145}\)
12. Per- and Polyfluorinated Alkylated Substances in Firefighting Foam

Background, identity and use
The use of firefighting foam containing perfluorooctanesulfonic acid (PFOS) and other per- and polyfluorinated alkylated substances (PFASs) can result in the contamination of groundwater, drinking water and surface water, including the Mediterranean Sea. PFASs or their degradation products are highly persistent. Longer chain PFASs are bio-accumulative. Shorter chain PFASs accumulate in plants, including vegetables and fruits. There is no known degradation for perfluorinated substances in ground water or soil and therefore the contamination is long-term. PFASs are an issue of concern under the Strategic Approach International Chemical Management (SAICM).

For most firefighting foam applications, fluorine free foams (F3) are available today. They degrade in the environment and are not a long-term concern for ground and drinking water. A few of these foams are even solvent free.

PFOS and other shorter chain PFASs are used in firefighting foams, mainly in aqueous film-forming foams (AFFF) and alcohol resistant aqueous film-forming foams (AFFF-AR). PFOS was first produced by a US-based company 3M. All PFAS-containing foams are mainly designed for large scale fires of burning liquids, especially hydrocarbon tank fires with crude-oil, jet fuel, petrol and others (so called class B fires). One of the advantages of PFOS-based foams is their ability to cover spills of leaked fuels and suppress the vapour. The film-forming property gives them a high level of resistance to burnback. Still today, PFOS-based foams show the highest performance in this regard. The main advantage of these products is their ability to form a heat-resistant film and spread a vapour-proof seal on flammable liquids to stop the vapour and therefore extinguish the fire.

PFOS-containing foams quickly became the standard for multipurpose firefighting in all major industries due to their high performance on class B fires. They held this leading role until 2002 when 3M finally announced their decision to stop the production of all PFOS-based products within that same year. The decision was made after the indubitable worldwide evidence of the PBT-potential of PFOS.

In the same year, telomere surfactants (C6+2) have been introduced as drop-in replacements as a more environmentally friendly PFOS alternative for the market. Since then, alternatives have gradually developed due to rising market demand for environmentally friendly high-performance products suitable for fighting all kinds of fires.

*The GHS symbols and Stockholm Convention listing has been established for PFOS and PFOA. For most other PFAS the toxicological assessment is insufficient and PFAS has been listed as issue of concern under SAICM.
C6+2 products have now been replaced by pure C6 fluorosurfactants.

Hazard profile and problems
The use of PFOS and other PFASs can result in the long-term contamination of groundwater, surface water and related drinking water. While the shorter chain PFASs have lower bioaccumulation potential, they remain highly mobile in the environment and accumulate in plants. There is a lack of toxicological data for most shorter chain PFASs. Due to the extreme persistence of PFASs and the uncertain toxicity profile of many PFASs, precautionary principles must be applied.

Status in the Mediterranean region and internationally
In the Mediterranean region AFFF, AFFF-AR and some fluorinated protein foams still remain almost exclusively PFAS-based. The Stockholm Convention has listed a specific exemption for PFOS use as firefighting foams. In a range of countries that have requested exemptions, PFOS is still partly used and remains in stockpiles. In European countries, PFOS was banned in 2009 by the EU POP regulation, but fluorinated AFFF is still used by most fire brigades for hydrocarbon fires. However, as the new non-fluorinated replacements become available and are certified by accepted standards, the focus is shifting towards substitution with the available alternatives. As most firefighters have been used to AFFF for decades, it takes time for non-fluorinated replacements to gain acceptance. One approach gaining popularity for instance in western European refineries is the use of non-fluorinated F3 for the initial fire attack and the use of AFFF-stockpile only when the F3 stock has been depleted or when perceived performance differences remain, due to lack of training and use of the product.

Australia, starting with the state of Queensland, issued the strongest and most extensive restrictions for PFASs in 2015, effectively banning the use of PFAS-containing foam in all areas of firefighting, when retention of these chemicals away from soil and water cannot be guaranteed. This restriction becomes effective on 31.12.2018. Southern Mediterranean countries currently have no specific restriction of PFOS- or PFAS-containing foams. The lower price of these foams is driving the market demand without considerations for environmental pollution. Furthermore, the market might not be mature enough to change to newer technologies.

Identification and availability
A range of producers are offering fluorine free F3, including Solberg, Orchidee and 3FFF. F3 work differently than film-forming foams as they provide a very effective mechanism to shut off oxygen from the fuel surface. The F3 mechanism is to provide a very dense foam-structure to prevent oxygen from reaching the surface of liquid fuels, including in 2-dimensional fires.

F3 are available on the global market, including the North African region. Often the same suppliers and sellers have PFASs-based and fluorine-free foams, therefore availability is guaranteed. Currently, there is only one solvent-free F3, provided by the 3FFF company, which is in cooperation with a company in the MENA region.

Technical feasibility
For all kinds of polar liquids and solvents, F3 performance is equal to that of AFFF, if not better. There is sufficient technical data to prove that F3 products already represent a real alternative to AFFF /AFFF-AR for most scenarios, when used appropriately.
Tests from big waste disposal companies in Germany have shown much better results with F3 in a one-to-one test against fluorinated AFFF, for example on compressed plastics and other materials, where the water-film is not responsible for extinguishing the fires. F3 are effective due to their better foam quality, foam density and penetration of solid fuels. Therefore, they have a better cooling effect paired with oxygen cut-off, which is more important for those kinds of materials.

The lack of fluorinated molecules in F3 results in minor fuel pickup upon initial contact with the hydrocarbon fuel. As of today, AFFF still have a slightly better performance on 2-dimensional fires such as tank fires with crude oil or other hydrocarbons. The poorer performance of F3 in this case can be overcome with a higher application rate.

Within the German Fire Brigade Association there is a working group for foams that already recommends the use of fluorinated foams only as a last resort for big tank storages and refineries, due to their risk of large 2-dimensional fires. For all other uses, such as at airport in sprinklers, in other foam-based systems, in fire-extinguishehers and for all other kinds of fire brigades and users, the recommendation is to restrict the use of AFFF in the foreseeable future, as the existing alternatives already have proven high performance levels for most situations.

At low application rates (approximately 4 l/min/m²), a “gentle” F3 application is recommended due the known “fuel pickup” effect. Firemen are already trained in the gentle application method for all kinds of alcohol-resistant (AR) foams, therefore no additional training is needed. At high application rates (> 4.5 l/min/m²), this effect becomes irrelevant.

Economic feasibility

Generally, the price of F3 doesn’t differ significantly compared to other foams like AFFF used in Western Europe. However, Mediterranean countries generally buy very cheap and thus old technology-based foams, such as protein foams not considered best available techniques (BAT).

This history of price sensitivity makes it very difficult to introduce more rigorously produced and tested foams in these markets or to argue for environmental protection. Currently, South Mediterranean countries are unaware of the costs of removing PFASs from drinking water or remediation of contaminated groundwater. Considering the price competitiveness of BAT for fluorinated and non-fluorinate foams, F3 have the economic benefit of avoiding the high cost of groundwater and drinking water clean up and other external costs related to negative human health, environmental and ecological impacts.

Hazards, risk and life cycle considerations

The chemicals in F3 readily degrade in the environment and do not contaminate the groundwater and drinking water. In a BAT F3 product, no PBT substances should be found.

Depending on the formulation, F3 application might result in a higher biological oxygen demand (BOD) and chemical oxygen demand (COD). However, the most advanced F3 from 3FFF use solvent free (SF) technology in its most advanced F3, which reduces COD and BOD to a minimum.

The foams can be used safely without changing or compromising the operators’ protection protocols, including heat radiation and distance protocols for fighting fires.
13. Per- and Polyfluorinated Alkylated Substances in Textile Hydrophobing

Background, identity and use
Per- and polyfluoroalkyl substances (PFASs), sometimes referred to as per- and polyfluorinated chemicals (PFCs), are a group of over 4000 man-made substances used in numerous applications, including textile hydrophobing. PFASs or their degradation products are highly persistent in the environment. Some PFASs bioaccumulate and some have known toxic effects. PFASs are of concern under the Strategic Approach International Chemical Management (SAICM). Several low-hazard alternatives are readily available for the use of PFASs in textile hydrophobing. Two PFAS subclasses are widely used in hydrophobic textiles:

1. Side-chain fluorinated polymers can be applied on textiles to create a durable water repellent coating. They consist of a urethane, acrylate or methacrylate polymer with hydrocarbon side chains and contain on average ~0.5% unreacted residuals and impurities such as fluorotelomer alcohols (FTOHs) and perfluoroalkyl acids (PFAAs). They are not true polymers, because the fluorinated side chain can cleave off the backbone, degrading to PFAAs.
2. Fluoropolymers, such as polytetrafluoroethylene (PTFE), form membranes used as a laminate layer in protective weather outdoor apparel. Historically, PTFE was manufactured using perfluorooctanoic acid (PFOA), a PFAA with eight carbons in its molecule. After the phase-out of PFOA in most countries, PTFE is now manufactured using either shorter chain PFASs, such as perfluorohexanoic acid (PFHxA) (PFOA’s six carbon equivalent), or perfluorinated ethers such as GenX, which have less toxicological information available but are highly persistent, mobile in the environment and found in increasing concentrations in surface waters.

Southern Mediterranean countries have textile and carpet industries that use PFASs or other hydrophobing chemicals depending on the individual product requirements. Hydrophobic textiles sampled in Europe were found to contain PFASs, including PFOA, PFOS and PFHxS, as well as FTOHs and fluorotelomer acrylates (FTAs), which further degrade into PFAAs.

Hazard profile and problems
PFASs are highly persistent or form highly persistent degradation products in the environment. Many PFAs bioaccumulate and biomagnify. PFAAs and some of their precursors like FTOHs and FTAs show a range of adverse health effects to humans and biota. People can be exposed to volatile FTOHs contained in the PFAS treatment as manufacturing impurities.

Hazard profile

*The GHS symbols and Stockholm Convention listing has been established for PFOS and PFOA. For most other PFAS the toxicological assessment is insufficient and PFAS has been listed as issue of concern under SAICM.
Available alternatives for textile hydrophobing can be grouped into four main categories: hydrocarbons, silicones, dendrimers and nanotechnology.

Hydrocarbons repellents mimic the natural low energy surfaces of plant leaves. The oldest such formulations were based on paraffin compounds and waxes with metal (typically aluminium, zinc, or zirconium) salts of fatty acids (usually stearic acid) that attach to the textile fiber. Stearic acid-melamine repellents, formed by reacting stearic acid and formaldehyde with melamine, are a newer and more durable type of hydrocarbon repellents. Examples of commercially available hydrocarbon repellents include: ecorepel® from Schoeller, Texfin® HTF from TexChem®, zeroF from CHT/Bezema, Itoguard NFC from LJ Specialities, Arkophob FFR liq from Archroma Management GmbH, the Phobotex product range (APK, JVA, RCO and ZAN) from Huntsman and Purtext® from the Freudenberg Group.

The following PFAS-free alternatives are certified bio-based products: HeiQ Eco Dry (formaldehyde-free), miDori® evoPel (partially based on plant seed oils), Chemours’ Zelan® R3 finish (with 60 percent renewable sourced raw materials).

There are two main types of silicone waterproofing compounds: 1) elastomeric polydimethylsiloxanes (PDMS), which are polymers adhering to the textiles like a flexible protective membrane and 2) reactive silanes and siloxane resins with crosslinkable side chains, which are smaller molecules that chemically bind to the textiles, typically consisting of a silanol, a silane and a catalyst such as tin octane. Commercially available silicone-based water repellents include: Texfin®-HTF and Texfin®-SWR-A from TexChem, Phobotex series (Catalyst BC, SSR and WS Cone) from Huntsman, RHODORSIL TCS 7001 from Bluestar Silicons, as well as...
as products from Dow Corning®, Shin-Etsu and Wacker.157,165

Dendrimers, highly branched monomers that create tree-like structures on the fabric surface, are another alternative. The term dendrimer refers to the structure. Chemically, they can contain fatty acids, hydrocarbons, polyurethanes, polyalkylsiloxanes, or PFASs (not all dendrimers are PFAS-free).157,160 Examples include Rudolf Group’s BIONIC-FINISH® ECO and RUCO-DRY ECO®.157 **Nanotechnology** can also provide textile hydrophobicity. For instance, Schoeller Technology has developed NanoSphere®, a self-cleaning surface finish.165

Technical feasibility
PFAS-free repellents can provide a similar level of hydrophobicity and some can resist aqueous-based stains but don’t provide oil repellency166 which is assumed to be needed to keep treated fabrics cleaner longer and prolong water repellency between washes. However, these features are not essential and PFAS-free technologies are sufficient for all but potentially the harshest environments.157 A consumer survey conducted in 2016 in the EU revealed that oil repellency of outdoor garments exceeds user requirements, thus the use of PFAS finishes is over-engineering.166
Paraffin-based repellents typically need higher concentrations to be effective, while silicone repellents are highly effective at low doses, but excess application can reduce performance.161 Some PFAS-free repellents may also be less durable when laundered, especially the physically bound waxes. Stearic acid-melamine repellents have good durability to laundering but can negatively affect some of the physical properties of the fabric, such as tear strength and abrasion resistance.157 One test found that polyurethane repellents157 were least resistant to prolonged exposure to water, compared to silicone, wax and PFAS-based repellents. Tumble drying heat for 30 minutes is effective at improving repellency performance after prolonged exposure to water.157

Economic feasibility
The raw materials and application of PFAS-free alternatives are generally more economical compared to PFASs.166 Hydrocarbon repellents are generally less expensive, though some require higher dosage due to lower efficiency, making them in the end comparable in price to PFAS-based products.161 Silicone and dendrimer-based repellents can be more or less expensive than PFAS-based ones.161

Hazards, risks and life cycle considerations
A recent hazard assessment concluded that hydrocarbon repellents generally have the lowest hazard, followed by silicone-based repellents and lastly by PFAS-based repellents. The study could not assess the hazards of dendrimer-based repellents and nanorepellents due to insufficient data.160 Hydrocarbon repellents can biodegrade completely in the environment over time. Pure paraffin wax is generally a low hazard substance, harmless to human health, readily biodegradable and not bioaccumulative.160 However, some hydrocarbon-based formulations may contain other potentially hazardous ingredients such as isocyanates, dipropylene glycol and other unspecified compounds.160 Stearic acid-melamine repellents tend to release formaldehyde which is toxic to human health.157 Some silicone repellents contain siloxanes as manufacturing impurities, including compounds with high human health hazard and ecotoxicity such as octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5).160 Siloxanes can bioaccumulate in aquatic food webs. The waste water resulting from the finishing application process of silicon water repellents is toxic to fish, but overall, the risks associated with environmental releases of silicone-based repellents are lower than for PFAS-based repellents due to their lower environmental persistence.161
There is a lack of hazard assessment information for dendrimers. Some may contain residues of hazardous isocyanates, siloxanes or powerful irritating organic acids.161 While nanotechnology offers some advantages, including decreased water and solvent use, the small particle size may pose health risks by being readily transported in blood and other cells.157
CERTAIN METALS
(AND THEIR SALTS)
14. Lead Chromate Pigments in Paints

Background, identity and use
Major lead pigments in decorative paints were selected due to their high toxicity, environmental pollution potential and widespread use in the Southern Mediterranean countries, including for colouring cooking pots. High blood lead levels have been detected e.g., in Morocco, Egypt and Lebanon. While at least 67 countries have certain restriction for lead paints, currently only Algeria has restricted lead paints out of all Southern Mediterranean countries. Therefore, the use of lead in paint would continue in the region leading to environmental and human contamination if alternatives are not promoted. Alternatives for lead in paints are available and widely used in Europe and other industrial countries.

Lead pigments are one of the main sources of lead in solvent-based one pack decorative paints. The main lead pigments used (see Table 16) and addressed here are the yellow lead chromate pigments family, composed of:

- pure lead chromates,
- mixed phase pigment of lead chromate and lead sulphate (lead sulfochromate pigment) and
- mixed phase pigment of lead chromate, lead sulphate and lead molybdate (lead chromate molybdate sulphate pigment).

The words “lead chromate” or “chrome yellow” are usually used in literature to describe this whole family and can thus be mistaken for the right substance identification, since there are three different substances according to the European chemical Substances Information System (ESIS) classification.

Hazard profile and problems
Lead is a toxic heavy metal. The World Health Organization (WHO) lists lead exposure as one of the top ten environmental health threats globally. The Institute for Health Metrics and Evaluation (IHME) has estimated that in 2013 lead exposure accounted for 853 000 deaths due to long-term effects on health, with the highest burden in low and middle income countries.

<table>
<thead>
<tr>
<th>CHEMICAL / PIGMENT</th>
<th>CAS/EC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead sulfochromate yellow; Chrome Yellow (C.I. Pigment Yellow 34)</td>
<td>CAS No: 1344-37-2 EC No: 215-693-7</td>
</tr>
<tr>
<td>Lead sulfo molybdatocromate; Lead chromate molybdate sulfate red (C.I. Pigment Red 104)</td>
<td>CAS No: 12656-85-81 EC No: 235-759-9</td>
</tr>
<tr>
<td>Lead chromate</td>
<td>CAS No: 7758-97-6 EC No: 231-846-0</td>
</tr>
<tr>
<td>Red lead, Minium, Mennige, Lead plumbate, Trilead tetroxide</td>
<td>CAS No: 1314-41-6 EC No: 215-235-6</td>
</tr>
</tbody>
</table>

Table 16: Chemical identity of lead chromate pigments used in paints
countries. Children are especially vulnerable to negative health effects from lead, including decreased intelligence and increased behavioural issues.\(^\text{169}\) Childhood lead poisoning, also during pregnancy, can have lifelong health impacts including: learning disabilities, anaemia and disorders in coordination, visual, spatial and language skills. No safe level of exposure to lead has been identified.\(^\text{170}\)

Lead in paints is a rather dispersive use of lead. The use of lead pigments in paints for houses, kindergarten, schools and toys results in exposure of populations, including children. Lead chromate molybdate sulfate red, lead sulfochromate yellow and lead chromate were identified as Substances of Very High Concern (SVHC) according to Article 57(a) and (c); they are classified according to Annex VI, part 3, Table 3.2 of CLP/GHS Regulation (EC) No 1272/2008 as carcinogens category 2, R45 (may cause cancer) and as toxic to reproduction category 1, R61 (may cause harm to the unborn child) and are therefore included in the candidate list for authorisation.

Due to the use of abrasive blasting for renewing paints in large metal constructions, the lead gets dispersed into the environment leading to environmental contamination even if containment measures are applied. Also, at the end of life of steel and other metal construction, the lead ends up in the fly ash and becomes hazardous waste. Therefore, the use of lead in paints results in environmental contamination and hazardous waste formation. The relatively high blood lead (PbB) levels in Egypt, Lebanon and Morocco (including children) indicate important lead sources in the Southern Mediterranean region.\(^\text{171, 172, 173}\) The Egyptian children studied had a mean PbB level of 13 \(\mu\text{g}/\text{L}\). 55.8\% of these children had PbB levels above the intervention level of 10 \(\mu\text{g}/\text{dL}\) adopted in the United States.\(^\text{172}\)

The mean PbB level in Lebanese children (age 1-3) was 66.0 \(\mu\text{g}/\text{L}\), with 39 (14\%) children having PbB \(\geq 100\) \(\mu\text{g}/\text{L}\). The PbB levels in children (aged 6-12) in Morocco were also high, with a mean of 55.5 \(\mu\text{g}/\text{L}\).\(^\text{171}\)

Status in the Mediterranean region and internationally

Lead use in paints is restricted in at least 67 countries.\(^\text{174}\) In the EU, lead in paints is restricted under REACH\(^\text{175, 176}\) and lead paints have been phased out. From the South Mediterranean countries, only Algeria has restricted lead in paints. In other South Mediterranean countries lead and related pigments are currently not known to be restricted.\(^\text{174, 177}\)

Lead in paints is a dispersive use of lead. Lead is partly leached from the materials, or paint flakes are released as the paints age. In the end of life, when paints on objects are renewed, abrasive blasting often releases lead paints into the environment via fine paint particles. Due to the lack of waste management in Southern Mediterranean countries, lead painted wood objects might be burned in the open. Also, ashes from other end of life treatment in metal plant or incinerators might lead to environmental contamination via air emissions. Environmentally sound management of ashes is currently lacking.

Map of Lead Paint Limits

Figure 5

(Binding limits vs. Voluntary limits vs. No Limits Found)

<table>
<thead>
<tr>
<th>Binding</th>
<th>Voluntary</th>
<th>No Limit Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>Malta</td>
<td>Egypt</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Montenegro</td>
<td>Lebanon</td>
</tr>
<tr>
<td>Croatia</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Libya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morocco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* in process of passing binding limit
CERTAIN METALS (AND THEIR SALTS)

Identification, availability and technical feasibility

For over 30 years, pigment manufacturers have been offering lead free alternatives to the coatings industry and have substituted lead pigments in paints. The aim is to develop paints and coatings with the same colour and required performance. Available alternatives include:

1) Organic pigments with different colours (yellow, orange, red)
2) Inorganic pigments:
 - Bismuth Vanadium Oxide (Bismuth Vanadate; BiVa),
 - Complex Inorganic Coloured Pigments (CICP),
 - Iron Oxides
3) Bismuth Vanadate + organic pigments
4) Hybrid pigments

The most suitable alternatives which are used in the coatings industry are listed in Table 17. These pigments are well known and used in the entire European paint and coatings industry. The decorative paint and OEM automotive branch switched to lead free formulations more than 15 years ago. For lead chromate alternatives, sufficient production capacities exist worldwide and the components are broadly available.

Technical feasibility

There is no one-to-one plug-in substitute but the available organic and inorganic pigments can be mixed or blended to formulate lead free paints and coatings with the desired properties. The technical solution is to combine various inorganic pigments that provide opacity (e.g., Bismuth Vanadate, CICP’s and Iron Oxides) with organic pigments that offer clean and high chroma shades until the required shade is achieved.

1. For clean shades:
 Organic pigments in different colours (yellow / orange / red) are used.

2. For opacity:
 Inorganic pigments are used (BiVa, CICP and Iron Oxides and mixtures). Inorganic pigments meet the demands of dispersion, weatherfastness and opacity, but are low in chroma and tint strength.

3. For opacity + clean shades:
 Bismuth Vanadium Oxide + organic pigments or hybrid pigments can be used. They achieve the colour spaces of bright orange, yellow and red, offering the best-priced alternative for many heavy metal-free formulations.

Great knowledge and experience has been established in the substitution PY34 and PY104 by organic and inorganic pigments in Europe and other countries which can be used in the Southern Mediterranean countries. The use of colour matching tools such as software and equipment, is a technical standard within the entire paint and coatings industry.

The available alternative pigments can:

- Cover the entire colour space (from yellow, via orange to red);
- Supply clean colour shades;
- Fulfil high opacity requirements by combining organic and inorganic pigments;
- Cover different performance levels for interior and exterior use, very high light and weather resistance;
- Provide heat resistance >200°C;
- Have no bleeding issues;
- Fulfil technical requirements regarding coating manufacturing equipment.
There is no practical need for a single lead-free pigment alternative that covers all of these technical properties in one. Many alternatives are available in the relevant shade areas (yellow, orange and red), but have different performance levels. Paint manufacturers must select the alternatives according to their end user demands and specifications.

Economic feasibility
The use of alternatives is feasible from an economic perspective. In one submission to ECHA,178 lead-free formulation were compared, based on actual market prices, to lead containing formulation for selected colour areas (RAL shades) and different performance levels (as described above). At the highest performance level, the cost for lead chromate free formulations are 2-3 times higher; at the mid-performance level the costs are already comparable and in the lower performance area they are already cheaper.178

Bismuth Vanadate has a higher price compared to the lead pigments. The final price of the paint is however determined by the mixture of pigments.

Hazards, risks and life cycle considerations
Based on current knowledge of the substances and manufacturing processes, alternative colorants have a lower problematic toxicological profile.178 None of the pigments listed above are in the candidate list for Annex XIV of REACH Regulation 1907/2006/EC.178 All organic and inorganic pigments are primarily supplied in powder or granule dust free form. Safe handling of the products is described in the respective MSDS (Material Safety Data Sheet)178 which can help manage the associated risks. In Europe, all manufacturing processes for synthesizing these products must be approved by the relevant authorities.178 Detailed toxicological summaries based on REACH registration dossiers can be found in a submission to ECHA.178

Please note: Some organochlorine pigments can contain unintentional POPs like polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB). These unintentional POPs can be minimized by best available techniques (BAT) / best environmental practices (BEP) production.
15. Lead Oxide in Rustproof Primer Paints

Background, identity and use
Trilead tetroxide (Minium, Red Lead; Pb₃O₄) in rustproofing primer paints was selected for this study due to its high toxicity, the potential for human and environmental exposures and its widespread use in the North African and Middle East countries. Furthermore, elevated levels of lead in blood have been reported in the region’s inhabitants, including children. Elevated lead levels in children are causing decreased intelligence and increased behavioural issues. While at least 67 countries have certain restrictions for lead paints, currently only Algeria has restricted lead paints out of all Southern Mediterranean countries. Therefore, the use of lead in paint would continue in the region leading to environmental contamination if alternatives are not promoted and appropriate regulations are not set.

The main alternatives to lead anticorrosive primer paints are zinc compounds, widely available and in use since decades in Europe and other industrial regions. Zinc paints and anticorrosive coatings are the general state-of-the-art corrosion protection for metal constructions used in countries that regulate lead in paints.

Lead is used in rustproofing primer paints (Table 18) for corrosion protection of metal constructions. The paint has high flexibility, making it suitable even for sharp edges of metal constructions.

Hazard profile and problems of lead oxide in rust proof primer paints
Lead oxide is an important industrially used lead compound. The problem of lead toxicity has been known from the 19th century when intoxication by lead acetate was observed in London after consumption as surrogate “sweets.” The World Health Organization (WHO) lists lead exposure as one of the top ten environmental health threats globally. The Institute for Health Metrics and Evaluation (IHME) has estimated that in 2013 lead exposure accounted for 853,000 deaths due to long-term effects on health, with the highest burden in low and middle income countries. Children are especially vulnerable to negative health effects from lead exposure.

Hazard profile

GHS01	Explosive	
GHS02	Flammable	
GHS03	Oxidizing	
GHS04	Compressed Gas	
GHS05	Corrosive	
GHS06	Toxic	
GHS07	Harmful	
GHS08	Health hazard	
GHS09	Environmental hazard	
CMR	Carcinogenic/ Mutagenic/	Reprotoxic
EDC	Endocrine disrupting	
Persistent organic pollutant		

Table 18 Chemical identity of lead oxide used in rustproof primer paints

<table>
<thead>
<tr>
<th>PIGMENT DESIGNATION</th>
<th>CAS/EC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red lead, Minium, Mennige, Lead plumbate, Trilead tetroxide; Lead (II, IV) oxide; Pb₃O₄</td>
<td>CAS No: 1314-41-6 EC No: 215-235-6</td>
</tr>
</tbody>
</table>
lead, including decreased intelligence and increased behavioural issues.181 Childhood lead poisoning, including during pregnancy, can have lifelong health impacts such as learning disabilities, anaemia and disorders in coordination, visual, spatial and language skills. No safe level of exposure to lead has been identified.182

When inhaled, lead (II, IV) oxide irritates lungs. High doses result in chest and abdominal pain. When ingested, it is dissolved in the gastric acid and absorbed, leading to lead poisoning. High concentrations can also be absorbed through the skin. Long-term contact with lead (II, IV) oxide may lead to accumulation of lead compounds in organisms and to symptoms of acute lead poisoning. Chronic poisoning displays as agitation, irritability, vision disorders, hypertension and a greyish facial hue. Lead (II, IV) oxide was shown to be carcinogenic for laboratory animals.181

Lead in paints is a dispersive use of lead in houses and construction. Chalking, leaching, flaking, weathering, scraping and sandblasting of leaded paint result in lead deposits in the soil near houses or other constructions. Due to the use of abrasive blasting of paints during renovation of metal constructions, the lead gets dispersed into the environment leading to environmental contamination.183 Also, at the end of life of painted iron constructions, the lead ends up in smelters, is partly released in air and ashes and becomes hazardous waste. Therefore, lead in paints result in environmental contamination and in hazardous waste.

The relatively high blood lead (PbB) levels in Egypt, Lebanon and Morocco (including children) indicate significant lead sources in the Southern Mediterranean region.184, 185, 186 The Egyptian children studied had a mean PbB level of 13 μg/ℓ. 55.8% of these children had PbB levels above the intervention level of 10 μg/dL adopted in the United States.185 The mean PbB level in Lebanese children (age 1-3) was 66.0 μg/ℓ, with 39 (14%) children having PbB ≥ 100 μg/ℓ. The PbB levels in children (aged 6-12) in Morocco were also high, with mean PbB level of 55.5 μg/ℓ.184

Selected alternatives to lead oxide in rustproof primer paints

Identification, availability

For over 30 years, pigment manufacturers have been offering lead free alternatives to the coatings industry191 and have substituted lead pigments in paints.

Activated zinc primers

Zinc-rich coatings and primers (ZRPs) have the unique ability to provide galvanic protection to the steel surfaces to which they are applied. These coatings contain a large amount of metallic zinc combined with the binder. ZRP’s binder is usually an organic resin such as epoxy, alkyd or urethane. After the proper application of a zinc-rich coating to a steel substrate, the binder holds the zinc particles in contact with one another and the steel surface. These zinc primers can be applied as paint or by powder coating.
Zinc phosphate primer
Zinc phosphate primer is used for corrosion protection of steel, iron or aluminium construction. Zinc phosphate primer paints are offered by many suppliers and widely used. Zinc phosphate primer can also be applied as powder coating in industrial applications.

Industrial zinc coating system – Hot-dip galvanization
Hot-dip galvanization is the process of coating iron and steel with zinc. In this process the zinc alloy is coating the surface of the base metal when immersing the metal in a bath of molten zinc at a temperature of approximately 450 °C.

Electrogalvanization/zinc plating
Electrogalvanizing is a process in which a layer of zinc is bonded to steel in order to protect against corrosion. The process involves electroplating, running a current of electricity through a saline/zinc solution with a zinc anode and steel conductor. Compared to hot dip galvanizing, electroplated zinc offers the following advantages:
- Lower thickness deposits needed to achieve comparable performance;
- Broader conversion coating available for increased performance and more colour options
- Brighter, more aesthetically appealing, deposits

Technical feasibility
All the above-mentioned technologies are technically feasible and have been used for decades in practice. Zinc primer paints are readily available in the market and widely used by private parties and professionals. If the iron or steel is professionally painted/covered, zinc also provides extremely good corrosion protection. Hot-dip galvanization is widely used for industrial galvanized steel when corrosion resistance is needed without the cost of stainless steel. Zinc is more electropositive compared to steel, which means that when a galvanized coating is damaged and the steel exposed to the atmosphere, zinc can continue to protect steel through galvanic corrosion, making it superior to lead corrosion paints. Hot-dip galvanization is already available in Egypt (e.g., Egyptian Manufacturing & Advanced Systems), Morocco (e.g., Maghreb Steel) and Tunisia (e.g., Maklada). The galvanizing process is in accordance with: German Standard DIN 50976, British Standard BS 729 and American Standard ASTM.
Zinc electroplating is also widely used, thus technically feasible. According to the International Zinc Association, more than 5 million tonnes are used yearly for both Hot-Dip Galvanizing and Electroplating. The preparations for zinc primer paint application are more demanding than for lead paint. Corrosion protection of sharp edges and thick layers with zinc need the right technique.

Economic feasibility
Zinc primer paints cost more compared to lead paints. However, since zinc is a relatively cheap metal, the prices are still reasonable. The more demanding preparations for zinc primer paint application somewhat increase the overall cost of using zinc-containing paints compared to lead paints. The widespread use of zinc galvanization and electroplating, including in the Southern Mediterranean region, shows that both processes are economically feasible. The safe removal of lead paints/coating is expensive and in some countries only licensed remediation experts are allowed to perform it. Furthermore, the health effects including developmental toxicity caused by lead exposure are associated with high external costs. Therefore, considering the life cycle of lead- and zinc-based corrosion protection, the zinc alternative is more economical and its use in the region demonstrates that the switch is feasible.
Hazards, risks and life cycle considerations

Zinc is one of the most abundant elements in the Earth’s crust. Zinc is found in air, soil, water and in all foods. Zinc is an essential element often used as an additive in human food, animal feed and plant fertilizer. Zinc has a considerably lower toxicity compared to lead. Also, zinc phosphate is non-toxic and zinc aluminium phosphate is used as dental cement.

Ingesting too much zinc through food, water, or dietary supplements can also affect health. The levels of zinc that produce adverse health effects are much higher than the Recommended Dietary Allowances (RDAs) for zinc of 11 mg/day for men and 8 mg/day for women. Women who nurse their babies need 12–13 mg/day. If large doses of zinc (10–15 times higher than the RDA) are ingested, stomach cramps, nausea and vomiting may occur.

Inhaling large amounts of zinc (as zinc dust or fumes from smelting or welding) can cause a short-term disease called metal fume fever, which is generally reversible once exposure to zinc ceases.

Safe handling of zinc-containing paint products is described in their MSDS (Material Safety Data Sheet). Following these recommendations, hazards can be managed and risks can be avoided.

Soil contamination with zinc can also be problematic, so there are limits for zinc in soil. Therefore, abrasive blasting of painted objects is not recommended and requires appropriate housing or other measures to prevent the removed paint from distributing into the environment.

At the end of life of painted iron/steel constructions, the iron is normally recovered in an electric arc furnace (EAF). The zinc is largely transferred into the EAF fly ash. The collected EAF fly ash is normally transferred to a zinc recovery plant (e.g., Waelz kiln/process) and zinc recovered for reuse by thermal reduction. Therefore, the recovery potential of zinc from coated iron is high and the life cycle is (nearly) closed.
16. Copper Chromium Arsenate in Wood Treatment

Background, identity and use
Copper chromium arsenate (CAA) used in wood treatment contains carcinogenic arsenic and chromium(VI). Waste wood is sometimes used in Southern Mediterranean countries for baking bread and cooking indoor, resulting in associated exposures. CCA has been banned in a range of countries and is restricted for use in the EU. Several lower toxicity alternatives are available such as copper salts and linseed envelope. Another alternative is thermally treated wood without additives which can be suitable depending on wood use class requirements and preservation needs. For most outdoor uses in the Mediterranean region, environmentally friendly solutions like thermally modified wood could be used. For more demanding applications such as that used in contact with salt water, creosote treatment can be used.

Copper chromium arsenate (CCA) consists of a mixture of chromic acid, arsenic acid and cupric oxide in a ratio of 5:3:2, respectively (POP RC, 2014). CCA was the world’s most widely used wood preservative and has been used for timber treatment since the mid-1930s. Chromium acts as a chemical fixing agent and helps the other chemicals bind to the timber. Copper acts primarily to protect the wood against decay, fungi and bacteria, while the arsenic is the main insecticidal component of CCA, providing protection from wood-attacking insects, including termites and marine borers.

Hazard profile and problems
The European Commission Enterprise Directorate General identified a number of unacceptable risks from CCA-treated timber, including: risks to children (from CCA-treated outdoorplay equipment); other human health risks; environmental risks from combustion and disposal (including leaching in landfill); and risks to aquatic organisms. The European Communities’ Scientific Committee for Toxicity, Ecotoxicity and the Environment (CSTEE) evaluated this risk assessment and determined that no threshold exists for the carcinogenic effects of arsenic (which is also known to be genotoxic). The CSTEE could not establish the arsenic-related risks from landfill disposal of CCA-treated timber, which was classified as a hazardous waste by the Commission in 2000 and thus concluded that it is appropriate to apply the precautionary principle and reduce the production of CCA-treated timber as much as possible, because it is likely to cause serious harm.

Furthermore, work place exposures above recommended occupational exposure levels have been measured at indoor work sites and occasionally at outdoor work sites.

Status in the Mediterranean region and internationally
CCA-treated wood has been banned altogether in several countries including Denmark, Switzerland,
Vietnam and Indonesia. The use of CCA-treated timber has been restricted in the EU and arsenic compounds may not be used ‘in the preservation of wood. Furthermore, wood so treated may not be placed on the market.’ The only exceptions are for wood to be used in industrial installations where ‘the structural integrity of the wood is required for human or livestock safety and skin contact by the general public during its service life is unlikely.’ The following uses are specifically prohibited:

- in residential or domestic constructions, whatever the purpose;
- in any application where there is a risk of repeated skin contact;
- in marine waters;
- for agricultural purposes other than for livestock fence posts and structural uses;
- in any application where treated wood may come into contact with intermediate or finished products intended for human and/or animal consumption.

The EU amendment therefore restricts the marketing and use of both CCA and CCA-treated timber. In the US, wood intended to be used in residential settings, such as playground equipment, decks, picnic tables, landscaping timbers, residential fencing, patios, walkways and boardwalks, cannot be treated with CCA. CCA is not restricted in the Southern Mediterranean Countries and is still used in wood treatment or in imported wood products.

Identification and availability

One class of alternatives to CCA combines copper and organic preservatives. Alkaline copper quaternary (ACQ) is a preservative made of copper, a fungicide and a quaternary ammonium compound such as didecyl dimethyl ammonium chloride, an insecticide that also increases the fungicidal treatment. Copper salt are also augmented by an azole co-biocide, for instance organic triazoles such as tebuconazole or propiconazole “Copper azoles”. Copper naphthenate is an oil-borne wood preservative consisting of a mixture of copper salts and naphthenic acid. Creosote is a tar-based preservative, one of the oldest wood treatments and an alternative commonly used for demanding applications that come in direct contact with saltwater, groundwater, or fresh water.

Linseed oil has been incorporated in preservative formulations as a solvent and water repellent to “envelope treat” timber. This involves treating only the outer 5 mm of the cross-section of timber with a preservative such as permethrin. Thermally modified wood is that altered by a controlled pyrolysis process involving heating (> 180 °C) in the absence of oxygen. This result in some chemical changes to the wood cell wall components (lignin, cellulose and hemicellulose) in order to increase durability. Different producers use different technologies including nitrogen gas, steam and hot oil. For example, in Turkey, thermally modified wood is commercially produced and research has already started in the Magreb region.

Technical feasibility

ACQ can be used for all use classes (UC) except for marine use (UC5). Copper salt with triazole biocide or copper naphthenate can cover most application types including decking and posts. Both have been extensively tested and generally perform as well as CCA. Copper salts are corrosive to metals, particularly aluminium.
For marine use (UC5) and other highly demanding outdoor use with continuous wetting (UC4), creosote is the preferred wood preservative. Thermally modified wood can be used for aboveground non-structural uses such as siding, decking, flooring, garden furniture, playground furniture, window and door frames and indoor furniture. “Envelope” treated wood with linseed oil and permethrin can also be used for such applications.

Economic feasibility

The “envelope” treatment with linseed oil and permethrin is cheaper, as it uses far less preservative. The cost of creosote treatment is similar to the CCA treatment, while other copper-based wood treatments have somewhat higher costs. After the phase-out of CCA treated wood in the EU, the industry has flourished and benefited from the changes, as treated wood continues to be the material of choice. Therefore, the switch to alternatives did not have a negative impact on the market. Thermally modified wood is more expensive to purchase but cheaper to maintain. After the first or second maintenance of chemically-treated wood, the cost can equal that of thermally modified wood. Long term, the cost of thermally modified wood is likely to be lower compared to chemically-treated wood. At the end of life, thermally modified wood can be recycled or thermally recovered together with natural wood, while chemically-treated wood must be disposed in waste incinerators or landfills.

Hazards, risks and life cycle considerations

Thermally modified wood does not contain chemical additives and therefore does not have specific environmental or health concerns. The wood can be thermally recovered at the end of life like virgin wood, or recycled into other wood products. The ashes recovered from thermally modified wood can be used for soil amendment. Therefore, thermally modified wood is a preferred option for suitable uses. Linseed “envelope” treatment with permethrin also has low risk.

The alternative copper and organic preservatives are more environmentally friendly compared to CCA, as they do not contain chromium or arsenic. Similar to CCA treated wood, chemically-treated wood with copper salts and pesticides must be disposed of as hazardous waste in incinerators and the ashes cannot be used for soil amendments due to the heavy metal or polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) content.

Creosote has a harmonised classification in accordance with Regulation (EC) No 1272/2008 as carcinogen in category IB and contains constituents considered persistent, bioaccumulative and toxic in accordance with the criteria set out in Annex XIII to Regulation (EC) No 1907/2006. It should only be used in applications where no other alternatives are available. Creosote treated wood can be thermally recovered in biomass plants and does not lead to heavy metal transfer into ashes or increased formation of PCDD/Fs.

In Southern Mediterranean countries with weak or non-existing regulations for waste wood management, chemically treated wood bears the risk of being used in private heating or even cooking and bread baking, leading to increased risk of heavy metal and PCDD/F contamination.
17. Chromium in Leather Tanning

Background, identity and use
Tanning is the process of treating animal skins and hides to produce leather, which is more durable and less susceptible to decomposition. The main chromium compound used for leather tanning is chromium (III) hydroxide sulphate, Cr(OH)SO$_4$. The main alternative to chromium leather tanning is the use of vegetable tanning. This method can prevent adverse environmental and human health impacts while promoting local employment and sustainable economic opportunities. With the novel vegetable tanning process using olive residues, it became possible to produce leathers showing good shape retention but also exceptional softness, lightness and durability. Olive leaves are a by-product from olive production used as sustainable resource for the tanning extract.

Hazard profile and problems
Chromium(III) salts used in chromium tanning have a relative low toxicity. However, chromium(III) is partly oxidised to carcinogenic chromium(VI) and therefore a considerable proportion of leather contains chromium(VI). In a German survey of 850 mostly imported leather products, 50% exceeded the current regulatory limit for chromium(VI) of 3 mg/kg and approximately 17% contained chromium(VI) above 10 mg/kg. Chromium together with nickel and cobalt constitute the most frequent causes of contact allergy in the general population. While chromium(VI) is the major allergen, chromium(III) also contributes to the allergic reaction. Chromium allergies from leather have significantly increased in Denmark between 1995 and 2005. Workers in the Southern Mediterranean region are exposed to chromium in leather tanning, exhibiting adverse health effects including rhinitis, cough, expectoration, wheezes, dyspnea, chest pain, chronic bronchitis, asthma and skin diseases.

Releases from tanneries result in environmental contamination of water, air and wastes. Chromium is an important pollutant generating contaminated wastes including chromium shavings, chromium split, chromium leather trimmings and chromium-containing sludge from wastewater treatment. The protein-rich chromium-containing solid waste from tanning is used in developing countries as chicken and fish feed, resulting in widespread contamination of chicken and eggs with chromium(VI).

Status in the Mediterranean region and internationally
In the EU REACH Regulation, the use of chromium (VI) in leather products is regulated and, since 2015, leather products that come into contact with skin are not allowed on the EU market if chromium(VI) content is equal to or exceeds 3.0 mg/kg dry weight of the leather. A first restriction for chromium(VI) to a maximum of 3 mg/kg in leather exists in Egypt (the same limit as in the EU).

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS/EC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium (III) hydroxide sulphate, Cr(OH)SO$_4$</td>
<td>CAS No. 12336-95-7; EC No. 235-595-8.</td>
</tr>
<tr>
<td>Chromium(VI)*</td>
<td>CAS No. 1333-82-0; EC No. 215-607-8</td>
</tr>
</tbody>
</table>

*Chromium(VI) is formed as a by-product of Chromium(III) oxidation and is not directly applied to the product

Table 20 Chemical identity of chromium species used or formed in chromium tanning

Hazard profile

- GHS01 Explosive
- GHS02 Flammable
- GHS03 Oxidizing
- GHS04 Compressed Gas
- GHS05 Corrosive
- GHS06 Toxic
- GHS07 Health hazard
- GHS08 Environmental hazard
- GHS09 Mutagenic/ reprotoxic
- GHS08 Health hazard
- EDC Endocrine disrupting chemicals
- Persistent organic pollutant
Identification and availability
Alternatives to chromium tanning are organic tanning products, including vegetable tannins, glutaraldehyde, oxazolidine, phosphonium salts, melamine and methacrylic resins which show different properties and collagen reaction capacity.216
Natural vegetable tanning is the preferred alternative as it uses tannins that occur naturally in the bark, wood, fruits and leaves of many plants. Tannins bind to the collagen protein in the hide and coat them, causing them to become less water-soluble, more resistant to bacterial attack and also a bit more flexible.
In the Mediterranean region, residues from olive production, particularly the leaves, are an abundant source for the production of a new type of natural vegetable tanning agent. The patented tanning process from olive leaves has been developed by wet-green® GmbH217 and some tanneries in Europe have started to use this technology and produce healthy olive leaf tanned leather. Considering the quantity of olive leaves generated as a residue from olive production in the Mediterranean region, theoretically up to 40% of the world’s leather production – i.e., up to approximately 700 million m2 – could be made using the wet-green® tanning technology.217

Technical feasibility
Due to the careful tanning process and the natural tannins, vegetable-tanned leather usually develops a rich and beautiful patina which improves with time and use. It doesn’t crack or dry out and thus has a long lifespan potentially superior to chromium-tanned leather.
The leathers obtained can reach shrinkage temperatures of up to 80 – 85 °C, which gives them a thermal stability adequate for the manufacture of products such as leather goods and some footwear. The shrinkage temperature of chromium leather is higher (approximately 100 °C), but in most cases this is not required for further processing.
Based on the classical vegetable tanning characteristics, a very limited leather spectrum can be achieved with conventional vegetable tanning. In particular, the limited dyeability and lower softness are significant.
Vegetable tanning is a more complex tanning process which leads to higher tanning material costs, water consumption and processing times.
However, the olive leaf extract combines the advantages of organic synthetic reactive tanning agents (like glutaraldehyde) that result in stable chemical bonds (covalent bonds) with those of organic sourcing like the other vegetable tanning. This is done by the present vegetable polyphenols, which additionally generates a better separation of fibres, a filling effect and a pleasant round feel. Using the vegetable tanning process with olive residues, it became possible to produce leathers showing good shape retention but also exceptional softness, lightness and durability. The leather tanned with olive leaf extract is suitable for applications in all kinds of areas like furniture for the residential, commercial and automotive sectors, as well as shoes, watch straps, clothing and other leather goods.
Compared to conventional system, tanning with olive leaf extract significantly reduces water consumption and processing time, similar to chromium tanning.
Overall, the vegetable tanning method including the olive tanning requires more skilled craftsmen.

Economic feasibility
Vegetable tanning agents are required in higher amounts and thus have higher associated costs. Conventional vegetable tanning is slower and therefore costlier than chromium-based tanning, which takes less than a
day. Due to the more complex process, labour costs of vegetable tanning are higher. This also means that vegetable tanning can provide reliable work, especially useful in areas with high youth unemployment. Olive tanning has similar processing time to chromium tanning and no additional cost in this respect. The waste management costs of vegetable tanning are lower if the waste disposal cost are appropriately set. Also the wastewater is less polluted, resulting in discharge-related cost savings.

Vegetable tanned leather, using only natural tannins, has no negative health and environmental impact if biological oxygen demand (BOD) and chemical oxygen demand (COD) are controlled. The leather can be better recycled or composted. Therefore, health and environmental costs are lower.

Hazards, risks and life cycle considerations

Vegetable-based tanning is not associated with any health risks and can make the leather skin-friendly. In the case of wet-green®, the tanning active substances are also present in extra virgin olive oil. The tanning agent wet-green® OBE showed a very good performance in a dermatological test (Dermatest®). Moreover, it has been awarded the Cradle to Cradle® GOLD certificate and the PLATINUM Material Health Certificate (Cradle to Cradle Products Innovation Institute, San Francisco, CA/USA).

Actually, huge amounts of olive leaves become residues of the olive harvest and, especially, of the subsequent olive tree trimming (pruning), i.e., they are a side-stream without any added value in the countries of origin. Most of these leaves are disposed or burned leading to negative environmental impacts. Therefore, the olive leaf tanning agent has a sustainable sourcing. For the production of wet-green® olive leaf tanning agent, an efficient aqueous extraction process has been developed completely free of organic solvents. The product is not subject to regulation under EU Directives or the German Ordinance on Hazardous Materials (German GefStoffV). The solid leaf residues from extraction are used by local farmers as soil amendments.
PESTICIDES
18. Synthetic Pesticides used in Agriculture

Background, identity and use
Hundreds of synthetic chemical pesticide active ingredients (pesticides) are used currently in agricultural practices resulting in unwanted exposure to pesticide mixtures that cannot be adequately assessed. Pesticide exposure poses health risks to workers and consumers alike, while polluting the environment after emissions due to wind drift, run-off and leaching. From a precautionary principle perspective, there is a need to reduce pesticide exposure. A wide range of alternative approaches for pest control are available and can be implemented within integrated pest management and organic farming, as well as substituting certain harmful pesticides with less harmful chemicals, all of which support a more sustainable use of pesticides in line with EU Directive 2009/128/EC.

The term pesticide covers a wide range of substances including insecticides, fungicides, herbicides, rodenticides, molluscicides, nematicides, plant growth regulators and others. Among these, several organochlorine insecticides, used successfully in controlling a number of vector-borne diseases until today, were banned or restricted for agricultural use after the 1960s in most technologically advanced countries. The introduction of other synthetic pesticides including organophosphate insecticides in the 1960s, carbamates in the 1970s, pyrethroids in the 1980s and diverse groups of herbicides and fungicides in the 1970s-1980s has contributed to improving pest control and increasing agricultural outputs.

Hazard profile and problems
Pesticides pose serious threats to environmental quality and human health and have been linked to a range of illnesses including cancer, Alzheimer’s and Parkinson’s disease, hormone disruption, developmental disorders and sterility. They can also cause numerous neurological health effects such as memory loss, loss of coordination, reduced visual ability and reduced motor skills. Other possible effects include asthma, allergies and hypersensitivity. The World Health Organization (WHO) estimated that nearly 3 million agricultural workers suffer from acute pesticide poisoning. Preventable pesticide ingestion was estimated to amount to 186,000 deaths and 4,420,000 Disability Adjusted Life Years (DALYs) in 2002; however, these are mainly due to intentional self-poisoning. The cost of adverse endocrine health effects due to pesticide exposure in Europe is estimated at 120 billion euro per year. Due to the use of hundreds of pesticides in agriculture, humans are exposed to pesticide residues in food crops. Furthermore, pesticides reach the environment and expose non-target organisms including pollinating insects and aquatic

* The labellings consider the classification of certain Highly Hazardous Pesticides.
ecosystems during and after application to field crops. Therefore, considering the precautionary approach, problematic synthetic pesticides should be substituted where possible with less toxic and more sustainable alternatives, starting with phasing out highly hazardous pesticides (HHPs) based on considering for instance the WHO pesticide classification by hazard.

The use of synthetic pesticides has greatly increased in the Mediterranean region over the last twenty years, threatening the quality of groundwater and surface waters. Agricultural run-off via rivers is the most important point-source of pesticide contamination in the Mediterranean. By 2025, countries on the southern and eastern rims of the basin are expected to show a five-fold increase in their agro-food activities making countries the most vulnerable to increased pollution and environmental pressure from such development. Pesticides are one of the most frequently detected classes of micro-pollutants in water, especially in Mediterranean countries such as Spain and Italy, due to their widespread use in extensive areas of agricultural use.

Status in the Mediterranean region and internationally

Directive 2009/128/EC aims to achieve a sustainable use of pesticides in the EU and reduce the risks and impacts of synthetic pesticide use on human health and the environment by promoting Integrated Pest Management (IPM) and alternative approaches, such as mechanical pest control alternatives. However, pesticide use has not decreased in the EU since 2009. In 2013, approximately 300,000 tonnes of pesticide active ingredients were used in Europe and approximately 500 active substances were authorised by the EU for application on various crops.

EU-wide regulations do not only focus on synthetic pesticides, but also cover the organic farming supply chain – from production, to control and labelling. The EU has developed an Action Plan for the future of Organic Production in the European Union. The Southern Mediterranean region has weak restrictions on hazardous synthetic pesticides. For instance, 29 highly toxic active substances were identified in a short survey in Tunisia as currently in agricultural use. 16 of these are banned in Europe and 23 are included on the Pesticide Action Network (PAN)'s HHP list, revealing the need for better assessment and substitution.

The Regional Action Plan on Sustainable Consumption and Production in the Mediterranean includes IPM and organic farming and highlights that incentives should be provided for these good environmental practices.

Selected alternatives to synthetic pesticides used in agriculture

Identification, availability

A) Integrated Pest Management (IPM) is an ecosystem-based strategy that focuses on long-term prevention of pests through a combination of techniques such as biological control, habitat manipulation, modification of crop rotation practices and use of resistant varieties. Pesticides are used only after monitoring indicates that they are needed according to established guidelines and treatments are made with the goal of removing only the target organisms. Pest control tools are selected and applied in a manner that minimizes risks to human health, to beneficial and non-target organisms and to the environment. The Food and Agriculture Organization of the United Nations (FAO) has compiled typical steps for IPM and additional information is provided in the Sustainable Use of Pesticides strategy of the EU.

B) Organic farming embodies an ecological approach to farming that does not rely on or allow toxic pesticides, chemical fertilizers, genetically modified organisms, or antibiotics. FAO has published sustainable development opportunities for organic farming in Africa.
C) Biological approaches A wide range of biological alternatives are available for use instead of chemical pesticide and support IPM and organic farming. Biopesticides are made from naturally occurring substances that control pests by softer mechanisms developed by evolution in an eco-friendly manner. Alternatives that can be explored in the Mediterranean region include natural enemies, phytochemicals, microbes, natural pheromones, entomopathogenic fungi, biochemical agents, viruses (for a selection see Table 21). PAN has compiled information for non-chemical pest management in the tropics on an online information platform (http://www.oisat.org/controlmap.htm).

A first assessment of the availability of biopesticides in Tunisia found that only 5 insecticides, 8 fungicides, 2 nematicides and 3 pheromones or food attractants are on the market, compared to approximately 240 synthetic pesticides.

Technical and economic feasibility
Despite their low toxicity and environmental impact levels, biopesticides face a major obstacle in the form of higher costs and the need for more frequent reapplication, due to their lower persistence. Different biopesticides might need to be used for different pests because of their specificity.

A systematic overview of more than 100 studies comparing organic and conventional farming found that the crop yields of organic agriculture are higher than previously thought. The study, conducted by UC Berkeley researchers also found that certain practices could further shrink the productivity gap between organic crops and conventional farming.

The price for organic products are higher compared to conventional products and can overcompensate for the somewhat higher production cost. Considering the health implications and the high external cost of pesticide use,221, 239, 240 IPM and organic farming have usually lower life cycle costs, whereas technical feasibility challenges exist in the transition phase when changing from conventional to IPM practices, as changes and adaptations to the entire farming practice would have to be introduced.

Hazards, risks and life cycle considerations
The toxicological risks and hazards are usually lowered or minimized by IPM and organic farming as compared to using synthetic pesticides. State of the art IPM and organic farming can contribute to achieving food self-sufficiency and food security and to reducing poverty219 thus contributing to Sustainable Development Goals (SDGs). Furthermore, organic farming improves soil health 236, 241 by avoiding contamination of groundwater and drinking water with pesticides.

However, organic farming practices might use pesticides based on toxic metals (copper) and naturally occurring toxic chemicals (for example using naturally derived nicotine instead of synthetic, but structurally very similar neonicotinoids). In this context, it is important to seek lowest toxicity in selecting natural or biopesticides. Organic farming and IPM are usually still more sustainable options than using synthetic pesticides, mainly because reduced use of pesticides and using naturally occurring chemicals largely reduces manufacturing and synthesis-related impacts of chemically complex synthetic pesticides and avoids toxic end-of-life stockpiles including packaging.242, 243

<table>
<thead>
<tr>
<th>Alternative to synthetic pesticides</th>
<th>Type</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nettle extract</td>
<td>Phytochemical</td>
<td>Fertilizer, repellent</td>
</tr>
<tr>
<td>Essential oil (Cinnamaldehyde)</td>
<td>Phytochemical</td>
<td>Repellent, fungicide, insecticide</td>
</tr>
<tr>
<td>Paecilomyces fumosoroseus</td>
<td>Microbe</td>
<td>Entomopathogenic fungus against mites and whiteflies</td>
</tr>
<tr>
<td>(Z,Z,E)-7,11,13-Hexadecatrienal</td>
<td>Pheromone</td>
<td>Pheromone of leaf miner</td>
</tr>
<tr>
<td>Essential oil (Limonene)</td>
<td>Phytochemical</td>
<td>Repellent, fungicide, insecticide</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Entomopathogenic fungus</td>
<td>Repellent against many insects</td>
</tr>
<tr>
<td>Chrysoperla carnea</td>
<td>Natural enemy</td>
<td>Larvae are active predators of aphids and other small insects</td>
</tr>
<tr>
<td>Natural enemy</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Saponins of Chenopodium</td>
<td>Insecticidal</td>
<td></td>
</tr>
<tr>
<td>Amblyseius</td>
<td>Natural enemy</td>
<td></td>
</tr>
<tr>
<td>Macrolophus pygmaeus</td>
<td>Natural enemy</td>
<td></td>
</tr>
<tr>
<td>Sphodoptera littoralis</td>
<td>Virus</td>
<td></td>
</tr>
<tr>
<td>Heterorhabditis</td>
<td>Natural enemy</td>
<td></td>
</tr>
<tr>
<td>Nosea locustae</td>
<td>Natural enemy</td>
<td></td>
</tr>
<tr>
<td>Aluminum phosphide</td>
<td>Biochemical</td>
<td></td>
</tr>
<tr>
<td>Bacillus strains</td>
<td>Microbial</td>
<td></td>
</tr>
<tr>
<td>Mandestrobin</td>
<td>Biochemical</td>
<td></td>
</tr>
<tr>
<td>Essential oil component</td>
<td>Phytochemical</td>
<td></td>
</tr>
<tr>
<td>Nettle extract</td>
<td>Phytochemical</td>
<td></td>
</tr>
<tr>
<td>Bacillus strain</td>
<td>Natural enemy</td>
<td></td>
</tr>
<tr>
<td>Spodoptera littoralis</td>
<td>Virus</td>
<td></td>
</tr>
<tr>
<td>Heterorhabditis</td>
<td>Natural enemy</td>
<td></td>
</tr>
<tr>
<td>Nosea locustae</td>
<td>Natural enemy</td>
<td></td>
</tr>
<tr>
<td>Aluminum phosphide</td>
<td>Biochemical</td>
<td></td>
</tr>
<tr>
<td>Rodenticides</td>
<td>Phytochemical</td>
<td></td>
</tr>
<tr>
<td>Castor oil</td>
<td>Phytochemical</td>
<td></td>
</tr>
<tr>
<td>Cellulose from Powdered Corn Cob</td>
<td>Phytochemical</td>
<td></td>
</tr>
<tr>
<td>Red squill glycoside</td>
<td>Phytochemical</td>
<td></td>
</tr>
<tr>
<td>Plant growth regulators</td>
<td>Phytochemical</td>
<td></td>
</tr>
<tr>
<td>Bacillus strains</td>
<td>Microbial</td>
<td></td>
</tr>
<tr>
<td>Cytokinin</td>
<td>Phytochemical</td>
<td></td>
</tr>
<tr>
<td>Cis-Zeatin</td>
<td>Phytochemical</td>
<td></td>
</tr>
</tbody>
</table>

Table: Chemicals and Their Uses

<table>
<thead>
<tr>
<th>Chemical Type</th>
<th>Chemical Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant growth regulators</td>
<td>Bacillus strains</td>
<td>Microbial</td>
</tr>
<tr>
<td></td>
<td>Cytokinin</td>
<td>Phytochemical</td>
</tr>
<tr>
<td></td>
<td>Cis-Zeatin</td>
<td>Phytochemical</td>
</tr>
</tbody>
</table>

Table: Natural Enemies and Their Uses

<table>
<thead>
<tr>
<th>Natural Enemy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dacnusa</td>
<td>Parasitic wasp used in the controlling of leaf miners</td>
</tr>
<tr>
<td>Diglyphus</td>
<td>Parasitic wasp used in the controlling of leaf miners</td>
</tr>
<tr>
<td>Hypoaspis</td>
<td>Mite predator of thrips</td>
</tr>
<tr>
<td>S-Kinoprene</td>
<td>Insect juvenile hormone analog</td>
</tr>
<tr>
<td>Garlic extract</td>
<td>Phytochemical</td>
</tr>
<tr>
<td>Oleoresin capsicum</td>
<td>Metabolic disruption, membrane damage, nervous system dysfunction and repellent</td>
</tr>
<tr>
<td>Essential oils</td>
<td>Phytochemical</td>
</tr>
<tr>
<td>Tagetes erecta oil</td>
<td>Repellent</td>
</tr>
<tr>
<td>Neozigites floridana</td>
<td>Mite against Tetranychus urticae</td>
</tr>
<tr>
<td>Sorbitol octanoate</td>
<td>Mites and soft-bodied insects (dessication via loss of body fluids)</td>
</tr>
<tr>
<td>Sucrose octanoate esters</td>
<td>Biochemical</td>
</tr>
<tr>
<td>Phytoseiulus</td>
<td>A predatory mite of two-spotted spider mites</td>
</tr>
<tr>
<td>Lecanicillium longisporum</td>
<td>Natural enemy</td>
</tr>
<tr>
<td>Neozigites fresenii</td>
<td>Entomopathogenic fungus of Aphis gossypii</td>
</tr>
<tr>
<td>Aphidius</td>
<td>Parasitic wasp of aphids</td>
</tr>
<tr>
<td>Aphidoletes</td>
<td>Natural enemy</td>
</tr>
<tr>
<td>Coding Moth Granulosis Virus</td>
<td>Virus</td>
</tr>
<tr>
<td>Metarhizium anisoplae</td>
<td>Entomopathogenic fungus of many insects (thrips)</td>
</tr>
<tr>
<td>Rodolia cardinalis</td>
<td>Ladybird beetle predator of Icerya purchase</td>
</tr>
<tr>
<td>Encarsia formosa</td>
<td>Wasp parasitoid of whiteflies</td>
</tr>
<tr>
<td>Amblyseius</td>
<td>Mite predator of thrips</td>
</tr>
<tr>
<td>Macrolophus pygmaeus</td>
<td>Predatory bug of whiteflies</td>
</tr>
<tr>
<td>Saponins of Chenopodium ambrosioides</td>
<td>Phytochemical</td>
</tr>
<tr>
<td>Spodoptera littoralis nucleopolyhedrovirus</td>
<td>Virus</td>
</tr>
<tr>
<td>Heterorhabditis</td>
<td>Nematode entomopathogenic</td>
</tr>
<tr>
<td>Nosea locustae</td>
<td>Microsporidium fungi</td>
</tr>
<tr>
<td>Aluminum phosphide</td>
<td>Fumigant</td>
</tr>
</tbody>
</table>

Table: Fungicides

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential oil component: Cinnamaldehyde</td>
<td>Phytochemical</td>
</tr>
<tr>
<td>Nettle extract</td>
<td>Fertilizer, repellent</td>
</tr>
<tr>
<td>Bacillus strain</td>
<td>Antagonistic fungi</td>
</tr>
<tr>
<td>Mandestrobin</td>
<td>(Amide, Strobin) inhibiting mitochondrial respiration in fungi</td>
</tr>
</tbody>
</table>

Table: Herbicides

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xanthomonas campestris pv. Poa annua</td>
<td>Microbial</td>
</tr>
<tr>
<td>Essential oil: D-Limonene (from citrus peel)</td>
<td>Phytochemical</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Microbial</td>
</tr>
</tbody>
</table>

Table: Nematicides

<table>
<thead>
<tr>
<th>Nematicide</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amurca (olive oil lees)</td>
<td>Fertilizer</td>
</tr>
<tr>
<td>Extract of Tagetes erecta</td>
<td>Phytochemical</td>
</tr>
<tr>
<td>Essential oil (Cinnamaldehyde)</td>
<td>Phytochemical</td>
</tr>
<tr>
<td>Extract of garlic</td>
<td>Nematicidal</td>
</tr>
<tr>
<td>Compost and compost tea</td>
<td>Nematicidal</td>
</tr>
</tbody>
</table>

Table: Rodenticides

<table>
<thead>
<tr>
<th>Rodenticide</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castor oil</td>
<td>Natural dehydrant</td>
</tr>
<tr>
<td>Cellulose from Powdered Corn Cob</td>
<td>Phytochemical</td>
</tr>
<tr>
<td>Red squill glycoside</td>
<td>Botanical containing a cardiac glycoside causing intoxication and pulmonary edema</td>
</tr>
</tbody>
</table>

Table: Plant growth regulators

<table>
<thead>
<tr>
<th>Plant growth regulator</th>
<th>Description</th>
</tr>
</thead>
</table>
19. Perchloroethylene in Dry Cleaning

Background, identity and use
Tetrachloroethylene – better known as perchloroethylene, perc, or PCE – is a solvent used for dry cleaning garments and has been the solvent of choice for professional cleaners. Improper use, storage and disposal of perc has resulted in widespread contamination of groundwater and soil at dry cleaning sites. Exposure to perc is associated with a variety of adverse human health effects, especially in employees in this industry.

Alternative dry cleaning systems currently used include liquid carbon dioxide (\(\text{LCO}_2\)), wet cleaning and hydrocarbon solvent-based systems. Textile cleaning with \(\text{LCO}_2\) is the most efficient in terms of utility and waste disposal and has comparable costs to those of perc.\(^{244, 245, 256}\)

Perchloroethylene (perc, PCE, or tetrachloroethylene) is a chlorocarbon and colourless liquid widely used for dry cleaning and has a sweet odour detectable by most people at a concentration of 1 part per million (1 ppm). It has been used since the 1930s, becoming the standard solvent because of its effectiveness, ease of use and relatively low cost. It is thermally stable and recyclable and performs better for oil-based stains than for the more common water-soluble stains (coffee, wine, blood, etc.).\(^{246}\) It can cause colour loss, especially at higher temperatures and may damage special trims, buttons and beads.\(^{244}\)

Hazard profile and problems
Effects of chronic exposure to perc include dizziness, impaired judgement and perception, damage to liver and kidneys, respiratory disease\(^{47}\) and immune and hematologic system effects.\(^{248}\) A study also found an association between perc exposure and hypertensive end-stage renal disease\(^{249}\) and some cancers.\(^{247, 250}\) Other risks include neurotoxicity and reproductive and developmental toxicity.\(^{248}\) Some studies suggest that frequent over-exposure to perc over time may cause lasting and possible permanent central nervous system effects. Fatigue, lack of muscle coordination, loss of concentration, short term memory loss, personality changes, anxiety and irritability are some of the potential permanent long-term effects.\(^{251}\)

The most prevalent route of exposure to perc is by inhalation, also occurring orally through ingestion of contaminated water or food.\(^{47}\) Perc inhaled by pregnant women can reach the developing foetus and has been found in the breastmilk.\(^{247}\) The public is exposed to perc due to environmental and food contamination and potentially through the presence of residual perc in dry cleaned garments.\(^{244}\) Perc released from dry cleaning operations has contaminated thousands of sites and its degradation in groundwater can take decades to centuries. Perc can also cause vapour

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS/EC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrachloroethene, Tetrachloroethylene, PCE, Perc, Per, 1,1,2,2-tetrachloroethylene, Ethylenetetrachloride</td>
<td>CAS No: 127-18-4 EC No: 204-825-9</td>
</tr>
</tbody>
</table>

Table 22 Chemical identity of perchloroethylene (perc)
intrusion in buildings.247, 252 As a result, perc can be readily found in water, soil, air and sediments.253

Status in the Mediterranean region and internationally

Perc use in dry-cleaning is regulated by the European Solvents Emissions Directive and by the EU REACH and the majority of EU countries have implemented stringent regulatory requirements for the safe use of perc in dry cleaning. The measures implemented in Denmark are often considered a perc ban.254 Stringent national regulations in Europe enforce the use of perc in closed facilities with modern equipment and well educated staff, to achieve low emission limits.254

In the US, according to the US EPA, dry-cleaning machines located in residential areas will be phased out by 2020. In Europe, this ban affects a smaller number of dry cleaning shops.254 In Egypt high perc levels in air above 100 ppm was found in dry cleaning indicating low control.255

Identification, availability and technical feasibility

Alternative dry cleaning systems currently on the market include carbon dioxide, hydrocarbon solvent-based systems and wet cleaning. Wet cleaning processes rely on water, detergent, conditioners or degreasers to clean the garment. The processes sometimes use specialized equipment designed to minimize temperature and agitation or to create a fine mist to deliver the water-based detergents to the materials in need of cleaning. Professional Wet Cleaning is a water-based process that uses computer-controlled washers and dryers along with biodegradable detergents and specialized finishing equipment to process delicate garments that would otherwise be dry cleaned. While this alternative is not new, technology has evolved in the past 5-10 years, resulting in significantly improved performance.244 Carbon dioxide as a liquid (LCO\textsubscript{2}) or a supercritical fluid can be used with specialized equipment to clean garments.244, 256 It combines liquid carbon dioxide with specially formulated cleaning agents in a traditional basket-style machine under high pressure (4825 kPa).244 Hydrocarbon solvent-based systems are widely used alternatives to perc.

Economic feasibility

A cost analysis concluded the following: 256 (1) Textile cleaning with LCO\textsubscript{2} is most efficient in terms of utility and waste disposal; (2) The costs of LCO\textsubscript{2} and detergents are comparable to those of perc; (3) The labour costs of LCO\textsubscript{2} textile cleaning are comparable to those of perc dry cleaning; (4) Investment-related costs of LCO\textsubscript{2} textile cleaning per annum are higher, but equal per kg cleaned garments due to the higher annual capacity of the LCO\textsubscript{2} textile cleaning machine (2 cycles per hour) compared to perc dry cleaning (2 cycles in 1.5 hour). The overall costs of LCO\textsubscript{2} textile cleaning were 20% lower than those of perc dry cleaning due to its shorter turn-around time. LCO\textsubscript{2} textile cleaning is best combined with wet cleaning to cover the entire spectrum of soiled consumer garments and other textiles. The cost of the LCO\textsubscript{2} machine is up to 90,000 USD more than that of a perc machine. The higher investment cost of this alternative has limited its adoption.244, 245

Hazards, risks and life cycle considerations

The various alternatives differ primarily with respect to their environmental and human health and safety characteristics. Overall the alternative solvents assessed exhibit lower persistence, human health impact, bio-accumulation potential, and aquatic toxicity compared to perc.244, 245 The alternatives exhibit preferable human health characteristics compared to perc. A major concern for many of the alternatives is their flammability. The hydrocarbon solvents are Class IIIA or IIIB combustible liquids, thus requiring specialized equipment to protect against fire or explosion.244, 245 Wet cleaning and carbon dioxide have no flammability concerns.
20. Perchloroethylene in Metal Cleaning

Background, identity and use
Perchloroethylene, also known as perc, PCE, or tetrachloroethylene, is used in metal cleaning and vapour degreasing. Exposure to perc at workplace is associated with a variety of adverse human health effects. Improper use, storage and disposal of perc have resulted in widespread contamination of groundwater and soil.

Alternatives are aqueous cleaning technologies and dry ice blasting technologies having proven performance with low health and environmental impacts.

Perchloroethylene (perc) is used as a degreasing agent in vapour and liquid forms. It dissolves many organic compounds (including pitches and waxes) and inorganic compounds and can be used to clean metal parts. Perc along with trichloroethylene can be used in the vapour, boiling liquid, or ultrasonic cleaning of metalwork in the engineering industry. Because of its high boiling point, perc is effective in removing persistent deposits.

Hazard profile and problems
Effects of chronic exposure to perc include dizziness, impaired judgement and perception, damage to liver and kidneys, respiratory disease, and immune and hematologic system effects. A study of dry cleaning workers also showed an association between perc exposure and hypertensive end-stage renal disease and some cancer.

Other risks include neurotoxicity and reproductive and developmental toxicity. The most prevalent route of exposure to perc is by inhalation, though exposure can also occur orally through ingestion of contaminated water or food. Perc inhaled by pregnant women can reach the developing foetus and has been found in the breastmilk of mothers exposed to the chemical. The release of perc to groundwater has resulted in thousands of contaminated sites. Perc degradation in groundwater takes decades to centuries including formation of vinyl chloride. Perc can also cause vapour intrusion in buildings.

Some studies suggest that frequent over-exposure to perc and over months or years may cause lasting and possibly permanent central nervous system effects. Fatigue, lack of muscle coordination, loss of concentration, short term memory loss, personality changes, anxiety and irritability are some of the potential permanent long-term effects.

The average exposure level among workers degreasing metal and plastics in the US during 1944–2001 was 95 ppm. In these industries, exposure levels have decreased by two orders of magnitude over a 60-year period in the US.

Status in the Mediterranean region and internationally
Perc use in metal cleaning is regulated by the European Solvents Emission Directive and by EU REACH. In the EU, perc was evaluated under the 2013 Community Rolling Action Plan (CoRAP), which concluded that no additional regulatory action was required.

Perc is on the Canadian List of Toxic Substances

Table 23 Chemical identity of perchloroethylene (perc)

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS/EC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrachloroethene, Tetrachloroethylene, Perchloroethylene, PCE, Per, 1,1,2,2-tetrachloroethylene, Ethylenetetrachloride</td>
<td>CAS No: 127-18-4 EC No: 204-825-9</td>
</tr>
</tbody>
</table>
Case studies on how to prevent the use of toxic chemicals frequently found in the Mediterranean Region

(CEPA 1999 Schedule 1)267,268 and is also regulated for use and sale as solvent degreaser under the Solvent Degreasing Regulations (SOR/2003-283) (Canada Gazette, Part II on August 13, 2003). The purpose of the regulation is to reduce perc releases to the environment from solvent degreasing facilities using more than 1,000 kilograms of perc per year. The regulation includes a market intervention establishing tradable allowances in solvent degreasing operations exceeding the 1,000 kilograms threshold per year.

In the US, at federal level, perc is listed under the Toxics Substances Control Act (TSCA) and the Clean Air Act (CAA).269

In the Southern Mediterranean region, no specific regulations for perc have been found. In Egypt, high perc levels (above 100 ppm) in air were found in workplaces, indicating low control.270

Identification, availability and technical feasibility

A recent ECHA case study has compiled chemical and non-chemical alternatives to perc.271 Alternative degreasing solvents include methylchloride, trichloroethylene (TCE), n-propylbromide, hydrofluorocarbons (HFC) and hydrofluoroethers.

As “non-chemical” alternatives technologies aqueous cleaning technologies, dry ice blasting and plasma technology were considered. From a technical perspective, aqueous cleaning technologies and dry ice blasting technologies have been proven. For degreasing using plasma cleaning technologies, less reliable information is available.271

Hazards, risks and life cycle considerations

All alternative solvent solutions were either carcinogenic, mutagenic, reprotoxic (CMR) or potential ozone depleting substances (ODS) or greenhouse gases (GHG) (Table 24).271 Therefore, these alternatives constitute a rather incremental (if at all any) improvement and might introduce to shifting the burden from one problem to another, which should be avoided to select alternatives that are truly more sustainable and viable.

Although fresh aqueous cleaning solutions are usually classified as non-hazardous, they may accumulate enough contaminants during the cleaning process, such as metal powder or oil and grease, to be classified as hazardous waste when disposed. Spent solutions are typically treated in an on-site wastewater treatment system or shipped off site for disposal.271

Dry ice blasting uses and emits CO$_2$, which is a GHG that needs to be considered in life cycle costing.

Economic feasibility

The installation costs of the non-chemical alternatives are approximately:271

- 80,000 Eur for aqueous cleaning technologies;
- 85,000 Eur for dry ice blasting technologies;
- 150,000 Eur for plasma cleaning technologies.

The ECHA study, after considering cost and performance, selected the aqueous technology as the preferred alternative.271

Selected alternatives to perc in metal cleaning

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>CAS/EC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichloroethylene</td>
<td>CAS No. 79-01-6</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>CAS No. 75-09-2</td>
</tr>
<tr>
<td>n-propylbromide</td>
<td>CAS No. 106-94-5</td>
</tr>
<tr>
<td>Hydrofluorocarbons (HFC)</td>
<td>Various</td>
</tr>
<tr>
<td>Hydrofluoroether</td>
<td>Various</td>
</tr>
</tbody>
</table>

Table 24 Alternatives to perchloroethylene (perc) in metal cleaning 271
NOTES AND REFERENCES

1. Triclosan in Personal Care Products

2. Alkylphenol Ethoxylates as Surfactants or emulsifiers in Textile Industry
3. Bisphenol A-based Polycarbonate in Baby Bottles

4. Bisphenol A as a Developer in Thermal Paper

5. Polyethylene Plastic Bags

https://oceanconference.un.org/commitments/?id=15599

Case studies on how to prevent the use of toxic chemicals frequently found in the Mediterranean Region

http://www.plasticsforchange.org/blog/category/why-are-plastic-recycling-rate-so-low

6. PVC with DEHP in medical appliances

EU Scientific Committee on Emerging and Newly-Identified Health Risks (SCENIHR) (2016) Opinion on The safety of medical devices containing DEHP plasticized PVC or other plasticizers on neonates and other groups possibly at risk. Revision February 2016.

WECF PAN Europe (2016) Measures against endocrine disrupting chemicals. The example of Denmark, Sweden and France

Devices would only be permitted to contain such substances at a level above this limit if a justification is provided to the Notified Body (NB) - which is overseen by the national competent authority.

Blood transfusion bags still use PVC since DEHP or other softeners acts as a stabilizer of the red blood cell membrane and thus preserves the blood.

BASF, Hexamoll® DINCH® The trusted non-phthalate plasticizer

ToxServices LLC (2012) GreenScreen™ Assessment for Hexamoll® DINCH®

7. PVC in Toys and Childcare Products

ECHA (2013) Evaluation of new scientific evidence concerning DINP and DIDP. Final review report

Chemical Watch (2016) REACH Committee approves DEHP use in recycled PVC. Global Risk & Regulation News. 21 April 2016

Biobased News. ZOE B Organic Introduces the World’s First Biodegradable Beach Toys: Finally Toys that Clean Up after Themselves. 10 June 2014.

Sosa (2016) Association of the Type of Toy Used During Play With the Quantity and Quality of Parent-Infant Communication. JAMA Pediatr. 170(2), 132-137.

8. Commercial Decabromodiphenyl Ether in Textiles

91 Ren et al. (2011) PBDD/F impurities in some commercial deca-BDE. Environ Pollut. 159, 1375-1380.
97 BEUC and EEB (2013) EU ECOLABEL FOR BED MATTRESSES. Comments on the criteria proposa. May 2013
98 TEST PROCEDURE: 16 CFR 1632, California TB 106 and FF-4-72 Mattress Pad Flammability Evaluation. TEST PROCEDURE: 16 CFR 1633, Test Configuration B. Requirements and Test Procedure for Resistance of a Mattress and/or Mattress Box Spring Set to a Large Open-Flame.
99 McKenna et al. (2017) Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate. DOI: 10.1016/j.chemosphere.2017.12.017
100 Lindeman AE, Babrauskas V, Lucas D, Blum A (2014) POLICY CHANGES COULD REDUCE THE USE OF FLAME RETARDANTS WHILE MAINTAINING FIRE SAFETY. Organohalogen Compounds 76, 1236-1239.
102 UN Environment (2017) Guidance on best available techniques and best environmental practices for the recycling and disposal of articles containing polybrominated diphenyl ethers (PBDEs) listed under the Stockholm Convention on Persistent Organic Pollutants; Updated January 2017
103 UN Environment (2017) REGIONAL ACTION PLAN ON SUSTAINABLE CONSUMPTION AND PRODUCTION IN THE MEDITERRANEAN.
105 According to FAO SEKEM converted 70 ha desert sands into fertile soil, supporting livestock and bees by using organic and biodynamic agricultural methods (composting, mulching, cover cropping), http://www.fao.org/docrep/005/y4137e/y4137e02b.htm
9. Short-Chain Chlorinated Paraffins as Metal Working Fluids

117 European Communities (2002) Implementing the HELCOM objective with regard to hazardous substances, Guidance document on short chain chlorinated paraffins. Helsinki Commission,

10. Commercial Decabromodiphenyl Ether in Plastic electronics and transportation

127 Ren et al. (2011) PBDD/F impurities in some commercial deca-BDE. Environ Pollut. 159, 1375-1380.
129 Tue et. al. (2013) Dioxin-related compounds in house dust from New York State: occurrence, in vitro toxic evaluation and implications for indoor exposure. Environ Pollut. 181, 75-80.

11. Short chain chlorinated paraffins in fatliquoring in leather
12. Per- and Polyfluorinated Alkylated Substances in Firefighting Foam

http://www.3fff.co.uk/index.php/en/

13. Per- and Polyfluorinated Alkylated Substances in Textile Hydrophobing

Danish Ministry of the Environment 2015. Alternatives to perfluoralkyl and polyfluoroalkyl substances (PFAS) in textiles. Survey of chemical substances in consumer products No. 137.

14. Lead Chromate Pigments in Paints

“Lead paint” is paint or similar surface-coatings to which one or more lead compounds have been added.

ECHA ANNEX XVII TO REACH – Conditions of restriction. Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles. Entry 17 Lead sulphates.

ECHA ANNEX XVII TO REACH – Conditions of restriction. Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles. Entry 16 Lead carbonates.

BASF SE (2014) Third party submission of information on alternatives for Applications for Authorisation. Substance: Lead sulfochromate yellow (C.I. Pigment Yellow 34), Lead chromate molybdate sulphate red (C.I. Pigment Red 104)

Organic pigments have strengths in chroma and tint strength but are weaker in weatherfastness and opacity; it is the other way around with inorganic pigments. Hybrid pigments provide an alternative and are growing in the market. Hybrid pigments help to bridge the gap between performance and costs without neglecting environmental considerations.

15. Lead Oxide in Rustproof Primer Paints

“Lead paint” is paint or similar surface-coatings to which one or more lead compounds have been added.

ECHA ANNEX XVII TO REACH – Conditions of restriction. Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles. Entry 17 Lead sulphates.

ECHA ANNEX XVII TO REACH – Conditions of restriction. Restrictions on the manufacture, placing on the market and use...
of certain dangerous substances, mixtures and articles. Entry 16 Lead carbonates.

BASF SE (2014) Third party submission of information on alternatives for Applications for Authorisation. Substance: Lead sulfochromate yellow (C.I. Pigment Yellow 34), Lead chromate molybdate sulphate red (C.I. Pigment Red 104)

Waelz kilns for zinc recovery can have high PCDD/F emissions and require BAT/BEP air pollution control.

16. Copper Chromium Arsenate in Wood Treatment

According to the European Standard EN335, 5 use classes (UC) for wood are defined: UC 1 wood or wood-based product is inside a construction, not exposed to the weather and wetting; UC 2 wood product where occasional, but not persistent, wetting can occur; UC 3 wood product above ground and exposed to the weather (particularly rain). UC 4 wood is in direct contact with ground and/or fresh water; UC5 wood is permanently or regularly submerged in salt water

17. Chromium in Leather Tanning

212 Gaafar M et al. (2017) Health-related disorders on occupational exposure to chromium in a leather tanning factory (Menoufia, Egypt). DOI: 10.4103/1110-2098.211508
215 Egyptian Ministerial Decrees No. 961/2012,

18. Synthetic Pesticides used in Agriculture
224 PAN (2016) PAN International List of Highly Hazardous Pesticides (PAN List of HHPs).
19. Perchloroethylene in Dry Cleaning

Calvert et al. (2010). Mortality and end-stage renal disease incidence among dry cleaning workers, Calvert et al., Occupational Environmental Medicine, 2011; 68: 709-716

De Walle et al. (2005) DEmonstration Textile CO$_2$ Treatment Introduction Validation Effort – DETECTIVE. EU Life project. Project Number LIFE00 ENV/NL/000797

20. Perchloroethylene in Metal Cleaning

Calvert et al. (2010). Mortality and end-stage renal disease incidence among dry cleaning workers, Calvert et al., Occupational Environmental Medicine, 2011; 68: 709-716

ECHA (2017) Substitution of trichloroethylene as cleaning solvent in metal processing.