Deciding parity of graph crossing number

Hlinný, Petr; Thomassen, Carsten

Published in:
SIAM Journal on Discrete Mathematics

Link to article, DOI:
10.1137/17M1137231

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Deciding Parity of Graph Crossing Number

Petr Hliněný1 and Carsten Thomassen2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
hlineny@fi.muni.cz
2 Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
ctho@dtu.dk

Abstract. We prove that it is NP-hard to determine whether the crossing number of an input graph
is even or odd.

1 Introduction

For many graph invariants, the complexity of determining the parity of the invariant is the same
as that of determining the invariant itself. Suppose, for example that we have an algorithm for
finding the parity of the chromatic number $\chi(G)$ of a graph G. Then we can apply the algorithm
to the graphs $K_1 \cup G, K_2 \cup G, \ldots$ where K_n is the complete graph with n vertices. The sequence
of parities is first constant and then alternating. The number of elements in the constant part of
the sequence is the chromatic number of G. Similar arguments apply to the clique number $\omega(G)$
and the independence number $\alpha(G)$. It also applies to the genus $g(G)$ of a graph G, since one can
construct, in polynomial time, a graph G' such that $g(G') = \alpha(G) - |E(G)|$, as proved in [16].

The crossing number $cr(G)$ of a graph G is the minimum number of pairwise edge crossings in
a drawing of G in the plane. The crossing number has a certain similarity to the genus: For planar
graphs, the invariants agree, and for each fixed k the questions "Is $cr(G) \leq k$", and "Is $g(G) \leq k$"
are in P. The former can easily be reduced to a planarity problem (see also [6]). The latter is in P by the Robertson-Seymour theory. Both problems are NP-complete when k is part of the input
[5],[16]. Both problems remain NP-complete even for very restricted graphs, and they may be hard
to determine even for very simple classes of graphs such as complete graphs and complete bipartite
graphs where the crossing numbers are still unknown. The crossing number problem is NP-complete
even for cubic graphs [8] and for graphs that become planar after removing only one edge [4], and
also for drawings where all local orientations are prescribed [13]. Even approximation is hard: There
exists a number $c > 1$ such that the crossing number cannot be approximated within the factor c
in polynomial (unless NP=P) time [3].

For some graphs we know the parity of the crossing number, i.e., the value $(cr(G) \mod 2)$, for
example for $G = K_p$ and $G = K_{q,r}$ when all p,q,r are odd, see [10,7,1]. Knowledge of parity is
sometimes useful for determining the crossing number.

It seems that the hardness results for crossing numbers in [3–5,8,13], do not answer to the associated parity question, and Schaefer [15] asks the question: What is the complexity of determining
$(cr(G) \mod 2)$?

The purpose of this note is to point out that a recent hardness result on crossing numbers of tiles by Hliněný and Derňar [9] can be used to prove that that the parity question is NP-hard.

* Supported by the research centre Institute for Theoretical Computer Science (CE-ITI); Czech Science foundation
project No. P202/12/G061.
** Supported by ERC Advanced Grant GRACOL, project no. 320812.
We consider multigraphs (although we can subdivide loops and parallel edges in order to make the graphs simple if we wish so). We follow basic terminology of topological graph theory, see e.g. [12].

In a drawing of a graph in the plane, the vertices of G are distinct points, and the edges are simple curves joining their endvertices. An edge contains no vertex, except its ends. Two edges are disjoint except for common ends. Finally, no three edges meet in a common point. A crossing is a point which is not a vertex and which belongs to two distinct edges.

The crossing number $\text{cr}(G)$ of a graph G is the minimum number of crossings in a drawing of G in the plane. Hence, a graph G is planar if and only if $\text{cr}(G) = 0$.

Inspired by [11, 14] we define a tile $T = (G, a, b, c, d)$ where G is a graph and a, b, c, d is a sequence of distinct vertices. We call a, b the left wall and c, d the right wall of T. The right-inverted tile $T \dagger$ is the tile (G, a, b, d, c) and the left-inverted tile $\dagger T$ is (G, b, a, c, d).

A tile drawing of a tile $T = (G, a, b, c, d)$ is a drawing of the underlying graph G in the unit square such that the vertices a, b, c, d are the upper left, lower left, lower right, and upper right corner, respectively.

The tile crossing number $\text{tcr}(T)$ of a tile T is the minimum number of crossings over all tile drawings of T. A tile T is planar if $\text{tcr}(T) = 0$.

The join of two tiles $T = (G, a, b, c, d)$ and $T' = (G', a', b', c', d')$ is defined as the tile $T \otimes T' := (G'', a, b, c', d', d'')$, where G'' is the graph obtained from the disjoint union of G and G', by identifying c, b' and d, a'

Clearly, the join of two planar tiles is again a planar tile.

Let T_1, T_2 be planar tiles. Then $\text{tcr}(T_1 \otimes \dagger T_2) \leq \min\{\text{tcr}(T_1 \dagger), \text{tcr}(T_2 \dagger)\}$. This is illustrated in Figure 1.

We now define a diagonally separated planar tile as a planar tile, which has the following additional property: there exists a path $Q \subseteq G$, called a special diagonal path, from a to c such that every tile drawing of $T \dagger$ with $\text{tcr}(T \dagger)$ crossings has no crossing on Q.

The definition of a diagonally separated planar tiles in [9, Definition 9] is more restricted that the definition above. Hence [9, Lemma 10 and Corollary 12] implies the following.

Theorem 1 ([9]). Let T be a diagonally separated planar tile. Then computing $\text{tcr}(T \dagger)$ is an NP-hard problem.

3 Hardness reduction

Let S_k be the tile with 6 vertices and $5 + k$ edges as in Figure 2, where the edge between r and d consists of k parallel edges.
Fig. 2. A planar tile S_k used in Theorem 2. The thick edge rd consists of k parallel edges.

Theorem 2. Let T be any diagonally separated planar tile with q edges and a special diagonal path Q, and let k be any natural number. Replace every edge in Q by q^2 parallel edges and call the resulting tile T_1. Similarly, replace every edge in the path arc of S_k by q^2 parallel edges and call the result $S'_k = T_2$. Then

$$
tcr(T_1 \otimes \updownarrow T_2) = \min\{tcr(T_1 \updownarrow), tcr(S'_k \updownarrow)\} = \min\{tcr(T \updownarrow), k\}.
$$

Proof. Clearly, $tcr(T_1 \otimes \updownarrow T_2) \leq \min\{tcr(T_1 \updownarrow), tcr(S'_k \updownarrow)\} = \min\{tcr(T \updownarrow), k\}.$

Suppose now that there is a tile drawing of $T_1 \otimes \updownarrow S'_k$ with fewer than $\min\{tcr(T \updownarrow), k\}$ crossings. Then the multiple edge rd is not involved in any crossing because that would imply at least k crossings. Also, no edge of the paths Q or arc is involved in any crossing since that would imply at least $q^2 > tcr(T \updownarrow)$ crossings. So S'_k is drawn without crossings, and therefore the paths ard and bsc are disjoint. If necessary, we can redraw them so that they do not cross any edge of T. Using these paths we hence obtain a tile drawing of $T \updownarrow$. However such a drawing has at least $tcr(T \updownarrow)$ crossings, a contradiction which completes the proof. \[\Box\]

Using Theorems 1 and 2 we proceed to the main result.

Theorem 3. The problem of determining the parity of the crossing number $(cr(G) \mod 2)$ for any given graph G is NP-hard in general.

Proof. We prove that the problem of determining $(cr(G) \mod 2)$ for any graph G is at least as hard as the problem of computing $tcr(T \updownarrow)$ for any diagonally separated planar tile T.

Consider therefore an algorithm A for determining $(cr(G) \mod 2)$ for any graph G. Let T be any diagonally separated planar tile T. Now we form a graph G_k as follows: We form the tile $T_1 \otimes \updownarrow S'_k$ as in Theorem 2. We let p denote the number of edges (outside the special diagonal paths) in this tile and add p^2 edges between the four corners of the unit square in which the tile $T_1 \otimes \updownarrow S'_k$ is drawn, more precisely, between the pairs $(a,b), (b,c'), (c',d'), (d',a)$; see Figure 3. The crossing number of the resulting graph G_k equals $tcr(T_1 \otimes \updownarrow S'_k)$ since none of the edges $ab, be', c'd', d'a$ are involved in crossings in an optimum drawing of G_k. By Theorem 2, $cr(G_k) = tcr(T_1 \otimes \updownarrow S'_k) = \min\{tcr(T \updownarrow), k\}.$

We now apply the algorithm A to the graphs G_1, G_2, \ldots This results in a sequence which is first alternating, and then constant. The number of entries in the maximal alternating subsequence equals $tcr(T \updownarrow)$ which is hard to find, by Theorem 1. \[\Box\]

4 Conclusions

Our arguments can easily be extended to show that deciding, for any fixed integer $p \geq 2$, whether $cr(G)$ is divisible by p is NP-hard.
Fig. 3. A sketch of the construction of G_k from the tile T in the proof of Theorem 3. Each of the four thick lines represents many parallel edges which cannot be crossed in an optimal drawing.

The method in this note also extends to other variants of the crossing number. For example, it is NP-hard to determine the parity of the rectilinear crossing number since the crossing number of a graph G equals the rectilinear crossing number of an appropriate subdivision of G. On the other hand, it is shown in [8] that it is NP-hard to determine the so-called minor crossing number [2].

But, we do not know if it is equally hard to determine the parity.

References