Improved SBS limited parametric conversion by use of few mode fibers

Mariam Mathew, Neethu; Christensen, Erik Nicolai; Grüner-Nielsen, Lars; Rottwitt, Karsten

Published in:
Proceedings of 2018 European Conference on Optical Communication

Link to article, DOI:
10.1109/ECOC.2018.8535345

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Improved SBS limited parametric conversion by use of few-mode fibers

Neethu M. Mathew (1), Erik N. Christensen (1), Lars Grüner-Nielsen(2), and Karsten Rottwitt(1)

(1) DTU Fotonik, Ørsteds Plads, building 343 2800 Kgs. Lyngby, Denmark namama@fotonik.dtu.dk
(2) Danish Optical Fiber Innovation, Avendingen 22A, 2700 Brønshøj, Denmark

Abstract We model and measure the SBS threshold in few-mode fibers, and demonstrate parametric amplification. Furthermore, we present an optimized fiber design that has a SBS limited nonlinear phase shift, higher than that of a conventional highly nonlinear fiber.

Introduction

Stimulated Brillouin scattering (SBS) is in many cases a limiting factor for nonlinear signal processing in optical fibers as it sets the upper limit for the power, which can be launched into the fiber, and thereby set the maximum nonlinear phase shift. This is described through the nonlinear figure of merit (FOM) for SBS limited highly nonlinear fibers

\[ \text{FOM}_{\text{NL}} = \gamma L_{\text{eff}} P_{\text{th}}, \]

where \( \gamma \) is the Kerr nonlinear coefficient, \( L_{\text{eff}} \) the effective length and \( P_{\text{th}} \) the SBS threshold. In this work we use a higher order mode in a few mode fiber as a way to increase the FOM

\[ \text{FOM}_{\text{NL}} = \gamma L_{\text{eff}} P_{\text{th}}, \]

Measurement and modeling results for SBS threshold are shown for two fibers supporting LP_{01} and LP_{11}. For the fiber with the highest FOM, intra modal four wave mixing results are presented as well. The examined fibers are not ideal for nonlinear signal processing as they are designed as transmission fibers. A theoretical design for an optimized two LP mode highly nonlinear fiber is presented and shown to have a high FOM for the LP_{11} mode.

Modeling

To calculate the SBS threshold from the optical refractive index profile of the fiber, the models described in\(^3,4\), have been used. From the optical refractive index profile, the radial acoustic velocity profile is found. The acoustic wave equation is then solved for guided acoustic modes. For each acoustic mode, the Brillouin frequency shift \( \nu_B \), the Brillouin bandwidth \( \nu_{\text{Bbw}} \), and the peak Brillouin gain efficiency \( G_0 \) are found. The later from the overlap with the optical mode\(^4\). The SBS threshold power is determined by the acoustic mode with the highest Brillouin gain efficiency \( G_0,\text{max} \). The SBS threshold is then calculated from

\[ P_{\text{th}} = \frac{q}{G_0,\text{max} L_{\text{eff}}}, \]

where \( q \) is a constant, depending on \( \nu_B, \nu_{\text{Bbw}}, G_0,\text{max}, \) fiber attenuation, length and finally the ratio of input power and back reflected Stokes power at threshold. In our modeling this ratio is set to 0.16 as this gives best agreement with measured threshold. \( q \) is then calculated from formula (20), (27), and (28) in\(^3\).

Four fibers have been modeled. The two first are commercial fibers from OFS, a step index fiber (2MSIF) supporting two LP modes and a graded index fiber (2MGIF) also supporting two LP modes\(^5\). Both originally designed as transmission fibers. These fibers have also been used for the experimental work. However, as shown later these fibers are not ideal for use for parametric amplification as their high chromatic dispersion\(^5\) give poor phase matching. To our knowledge no few mode fibers have been realized with better phase matching. However, some theoretical designs have been proposed\(^6,7\). These fibers are designed for a zero dispersion wavelength around 1550 nm for both LP_{01} and LP_{11} and a high Kerr nonlinear coefficient for both modes. The third design modeled is a round version of the elliptical design proposed by Guo and co-workers\(^7\) (FM-HNLF-SI). Finally, the fourth design is a proposed improved version of the Guo design (FM-HNLF-
Tab. 1: Modeling results at 1550 nm for a fiber length of 1 km.

<table>
<thead>
<tr>
<th>fiber type</th>
<th>2MSIF</th>
<th>2MGIF</th>
<th>FM-HNLF-SI</th>
<th>FM-HNLF-GI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n_2)</td>
<td>(A_{\text{eff}})</td>
<td>(\gamma)</td>
<td>(G_{0,\max})</td>
</tr>
<tr>
<td></td>
<td>m(^2)/W \cdot 10^{-20})</td>
<td>(\mu\text{m}^2)</td>
<td>(W \cdot \text{km}) (^{-1})</td>
<td>(W \cdot \text{m}) (^{-1})</td>
</tr>
<tr>
<td>2MSIF</td>
<td>2.25</td>
<td>215</td>
<td>0.42</td>
<td>0.70</td>
</tr>
<tr>
<td>LP(_{01})</td>
<td>2.25</td>
<td>210</td>
<td>0.43</td>
<td>0.51</td>
</tr>
<tr>
<td>LP(_{11})</td>
<td>2.30</td>
<td>96</td>
<td>1.0</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>2.30</td>
<td>128</td>
<td>0.73</td>
<td>0.144</td>
</tr>
<tr>
<td>2MGIF</td>
<td>2.80</td>
<td>24</td>
<td>4.7</td>
<td>0.745</td>
</tr>
<tr>
<td>LP(_{01})</td>
<td>2.60</td>
<td>68</td>
<td>1.6</td>
<td>0.128</td>
</tr>
<tr>
<td>LP(_{11})</td>
<td>2.80</td>
<td>35</td>
<td>4.9</td>
<td>0.609</td>
</tr>
<tr>
<td></td>
<td>2.60</td>
<td>23</td>
<td>1.7</td>
<td>0.077</td>
</tr>
</tbody>
</table>

G) where the step index core is replaced by a graded index core while still keeping the same nonlinear and dispersion properties for LP\(_{01}\) and LP\(_{11}\). The refractive index profile for the two fibers are shown in figure 1. The modeling results are summarized in table 1. Both the nonlinear refractive index \((n_2)\) and attenuation are known to depend on GeO\(_2\) doping levels and mode overlap with the doped area. For the theoretical designs they are roughly estimated by comparing with other similar fibers. For all fibers, it is observed that the FOM\(_{\text{NL}}\) is higher for LP\(_{11}\) than for LP\(_{01}\). I.e. use of LP\(_{11}\) for SBS limited signal processing seems advantageous. However, the improvement from LP\(_{01}\) to LP\(_{11}\) is seen to vary depending on the fiber design. The 2MSIF only show a 40\% improvement compared to 230\% for the 2MGIF. For the FM-HNLF the FOM\(_{\text{NL}}\) is increased for the LP\(_{01}\) with 30\% and for the LP\(_{11}\) with 80\% by replacing the step index core with a graded index core. For comparison conventional single mode HNLF with a GeO\(_2\) doped core have a FOM\(_{\text{NL}}\) of around 0.21\(^2\).

SBS Measurements
The Brillouin scattering measurements are done on a 10 km long 2MSIF and a 1 km long 2MGIF. The experimental set-up is shown in figure 2. An Agilent laser at 1545.14 nm is used as the pump source. The pump is fed to the two mode fiber under test through a circulator. For varying input powers, the Brillouin back reflected power is monitored at the third port of the circulator, while measuring the output power at the far end of the test fiber. The launched power into the test fiber is measured using a cut back technique. The LP\(_{11}\) mode is excited in the fiber using a thermally induced fiber based long period grating with a mode purity greater than 20 dB. The SBS threshold (SBST) is calculated from the reflection measurements using the tangent intersection method as shown in figure 3. For the 2MGIF, the SBST are measured as 150 mW and 462 mW for the LP\(_{01}\) and LP\(_{11}\) modes respectively, while for 2MSIF, it is measured at a lower value of 33 mW and 41 mW respectively. The measured values agrees well with the modeled SBST values as shown in table 2. The higher SBS threshold measured for the LP\(_{11}\) mode accounts for its higher effective area and less overlap with the acoustic modes compared to the fundamental LP\(_{01}\) mode. Going from a step index profile to a graded index profile further changes the acoustic mode profiles resulting in an even lesser overlap between the optic and acoustic modes and a higher SBST.

Fig. 3: The measured SBS threshold for the LP\(_{11}\) mode in the 2MGIF fiber

Tab. 2: SBS threshold

<table>
<thead>
<tr>
<th></th>
<th>2MSIF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>(P_{\text{th,mod.}})</td>
</tr>
<tr>
<td>km</td>
<td>W</td>
</tr>
<tr>
<td>1</td>
<td>0.12</td>
</tr>
<tr>
<td>10</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>0.028</td>
</tr>
<tr>
<td>10</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Parametric amplification
To demonstrate the higher FOM\(_{\text{NL}}\) of higher order mode amplification, we measure the conversion efficiency of intra modal four-wave mixing (FWM) separately for each mode in the 2-mode graded index fiber.
An EDFA amplified tunable laser source is added to our set-up (dashed lines in figure 2), which provides ≈ 60 mW of optical power. To measure the output spectrum an optical spectrum analyzer is used. The conversion efficiency is given as the ratio between signal and idler power. The modes are launched using either a single-mode to few-mode fiber splice or a broadband long period grating. The pump is kept at 1545.14 nm, and the power is adjusted to the Brillouin threshold for each mode respectively to measure the maximum conversion efficiency. The signal and pump polarizations are aligned by maximizing idler power before each measurement.

On figure 4 the conversion efficiency is shown for each mode. Since the dispersion is high in this test fiber, the phase-matching is extremely narrowband. Notice, how the LP\textsubscript{01} mode follow the distinctive sinc function pattern, while these are not clearly visible in the LP\textsubscript{11} measurement. This could be due to the OSA not perfectly picking up the LP\textsubscript{11} mode due to its asymmetric intensity pattern. The maximum conversion efficiency for the LP\textsubscript{01} FWM is -17.2 dB, while the LP\textsubscript{11} mode sees a 6.3 dB improvement at -10.92 dB. This corresponds well with the 7.3 dB improvement, predicted from the measured threshold values. This demonstrates that higher order modes are a viable path for increasing conversion efficiency.

Conclusions
We show that the non linear figure of merit for SBS limited highly nonlinear fibers (FOM\textsubscript{NL}) can be improved by optimizing the design of the index profile. Through modeling and experiments it is shown that a graded index fiber profile gives a higher SBS threshold than a step index profile. We have shown a FOM\textsubscript{NL} of 0.36 using LP\textsubscript{11} in an existing fiber with non ideal phase matching. Furthermore, we have shown a theoretical design also with a FOM\textsubscript{NL} of 0.36 with much better dispersion properties yielding an improved phase matching. This is an 80 % improvement compared to the FOM\textsubscript{NL} of 0.21 for conventional single mode HNLF\textsuperscript{2}. Finally, to the best of our knowledge, we demonstrate the first intramodal parametric amplification in a higher order mode.

Acknowledgements
We thank the Danish research council for financial support through the research grant: DFF −4184 −00433, and OFS Denmark for supplying the fiber.

References