Freeze-casting to create micro-channels in La0.66Ca0.33–xSrxMn1.05O3

Christiansen, Cathrine Deichmann; Nielsen, Kaspar Kirstein; Bordia, R. K.; Bjørk, Rasmus

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Christiansen, C. D., Nielsen, K. K., Bordia, R. K., & Bjørk, R. (2017). Freeze-casting to create micro-channels in La0.66Ca0.33–xSrxMn1.05O3. 1. Poster session presented at International Conference on Sintering 2017, San Diego, California, United States.
Freeze-casting to create micro-channels in La$_{0.66}$Ca$_{0.33-\delta}$Sr$_x$Mn$_{1.05}$O$_3$

C. D. Christiansen1,2,4, K. K. Nielsen1, R. K. Bordia2, R. Björk1

1Technical University of Denmark, Department of Energy Storage and Conversion, 2Clemson University, Department of Materials Science and Engineering, 4Presenting author: cadech@dtu.dk

Introduction
The templating technique of freeze casting is utilized as a way of creating directional porosity in the form of micro-channels in La$_{0.66}$Ca$_{0.33-\delta}$Sr$_x$Mn$_{1.05}$O$_3$ (LCSM). LCSM is a magnetocaloric material in which the Curie temperature can be controlled by varying strontium doping, making it ideal for application as a regenerator material in magnetic refrigeration [1]. One way to increase the cooling performance of a magnetic regenerator is by optimizing its geometry: while maintaining a large surface area to increase heat exchange with the regenerator fluid, it must not provide too much resistance to flow. It has been proposed that a matrix of micro-channels with a width of 100 μm is an optimum geometry [2].

Freeze-casting results in channels of widths of 10 to 100 μm, where the porosity depends on the solid load while the size and homogeneity of the channels depends on freezing conditions [3][4]. The figure on the right shows solid magnetic regenerators made of magnetocaloric materials of packed irregular particles and stacked plate geometries. A geometry in between – such as a micro-channel matrix – would be optimum.

Objectives
• Fabrication of LCSM ceramics with micro-channels by freeze casting
• Increase homogeneity of channels along the height of the sample by implementing dynamic freezing profiles instead of static freezing profiles
• Alter morphology of channels by gelation freeze casting, i.e. using gelatin to create a stable gel suspension before the freezing step

Materials and methods
The standard freeze casting route is altered in two steps: Dynamic and static freezing. Samples were frozen either statically at ~98°C or dynamically at ~10°C/min. Gelation freeze casting: Gelatin was added at 0.3 wt% (of solids) and left to harden before freezing.

Powders were used as received from Cer-Po-Tech and characterized as follows:

<table>
<thead>
<tr>
<th>Powder</th>
<th>Density [g/cm3]</th>
<th>Surface area [m2/g]</th>
<th>Porosity [%]</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCSM004</td>
<td>0.96</td>
<td>0.001</td>
<td>0.8</td>
<td>50.1</td>
</tr>
<tr>
<td>LCSM007</td>
<td>0.37</td>
<td>0.001</td>
<td>0.8</td>
<td>70.1</td>
</tr>
<tr>
<td>LCSM0075</td>
<td>0.25</td>
<td>0.001</td>
<td>0.8</td>
<td>50.1</td>
</tr>
</tbody>
</table>

Measurements of Zeta potential as a function of pH for LCSM in a 1 wt% aqueous suspension. The Zeta potential reaches a plateau at the lower pH range, indicating that a stable slurry is achieved at pH < 2. All slurries were thus prepared at pH = 2.5.

PSD of powders before and after 24h of low energy ball milling with dispersant indicated by dotted and solid lines respectively.

Experimental setup
Illustration of set-up and freezing profiles [6].

Results: Copper rod immersed directly in liquid N$_2$
Slurries of 14 vol% LCSM were freeze casted without control of temperature besides that of liquid N$_2$. SEM images showing the cross section perpendicular and parallel to the freezing direction of 14 vol% LCSM frozen with no control of temperature. Scale bar indicates 100 μm. The freezing front velocity decreases as the ice height increases due to increased thermal resistance. The lamellar pore size increases as the freezing front velocity decreases. Length and width of lamellar pores were determined by fitting an ellipse to individual pores in ImageJ. Pore size is here plotted as a function of height. Lamellar pore width is increased by a factor of 3, while the length is increased by a factor of 7.

A continuous measurement of temperature in four locations along the sample height yields the temperature change with respect to time at the moment of freezing (T=0) plotted as a function of height. The freezing driving force decreases along the height of the sample.

Results: Varying particle size
Slurries of 20 vol% LCSM were freeze casted and dynamic freezing profiles were, with and without the addition of gelatin.

Conclusions and outlook
Anisotropic porosity in the form of lamellar channels where achieved in LCSM ceramics by freeze casting, with increased homogeneity and lower aspect ratios achieved by implementing dynamic freezing profiles and an additional gelatin step, respectively. Thus, future work includes:
• X-ray tomography to establish 3D structure (i.e. pore connectivity, quantification of gelatin)
• Increased control of freezing for homogeneous macrostructure
• Detailed quantification of microstructure to establish correlation between processing (specifically freeze freezing and sintering) and structure
• Structure of ceramics vs. performance as regenerator material in magnetocaloric refrigeration systems

Acknowledgement
The project is funded by the Independent Research Fund Denmark. The presenting author would moreover like to thank Dr. Bordia’s research group at Clemson University and acknowledge the Otto Monsted Foundation for additional financial support.

Background
In freeze casting, a ceramic aqueous suspension (1) is directionally frozen (2). The ice crystals are removed by sublimation (3) leaving directional voids or channels in the material which is then sintered to a solid (4).

References

DTU Energy, Technical University of Denmark