Integrated microstructures on chip for ultrasensitive pathogen detection

Ngo Anh, Tien; Kant, Krishna; Huynh, Van Ngoc; Bang, Dang Duong; Wolff, Anders

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Integrated microstructures on chip for ultrasensitive pathogen detection

Tien Anh Ngo¹, Krishna Kant ² *, Ngoc Huynh Van ³, Dang Duong Bang ³, Anders Wolff ⁴

¹ Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
²Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
³ E-mail: tinan@food.dtu.dk

(*) T. A. Ngo and K. Kant contributed equally, and both should be considered as first authors)

Keywords: Solid-phase PCR, SAF microstructure, pathogen detection, lab-on-a-chip

Abstract

Nucleic acid amplification based polymerase chain reaction (PCR) technique is popular and gold standard method in molecular biology to amplify a single copy or a few copies of target DNA. It is widely used in molecular diagnostics to detect the wide range of pathogens. To address the huge demand of the molecular diagnostics the development of new integrated rapid and sensitive method for point of care devices is needed. Earlier pathogens detection based on nucleic acid amplification techniques have been more and more attractive and successful. Since it is easy to transfer nucleic acid amplification from liquid to solid phase into lab-on-chip (LOC) devices. Concerning the issues of molecular diagnostics, a solid phase PCR (SP-PCR) technique has been developed and become popular for molecular diagnostics[1–4]. Recently, we have successfully developed a LOC platform based on a combination of SP-PCR with supercritical angle fluorescence (SAF) microlens array embedded in a microchip for rapid foodborne pathogen detection[5]. By integrating the SAF microstructure array into a polymeric chip, the sensitivity of the test was increased to 46 folds compared to a conventional array without SAF[6]. Hence, the SAF microstructures array embedded microfluidic chip is a good strategy to develop a portable device for onsite, online, and rapid pathogen detection. However, to enhance the sensitivity of detection and multiplexing of samples, it is required to increase the number of SAF microstructures arrays on a chip. In this report, we addressed this challenge by fabricating small size of SAF microlens array in the microfluidic chamber of a disposable polymer (Cyclic olefin copolymers) chip. The limitation of detection obtained from SAF microstructures array will determine the sensitivity of the developed system. The advantages of increasing the number of sample site by increasing number of SAF and advantages of reducing the size of SAF will be discussed.


