Influence of active phase loading in hydrodeoxygenation (HDO) of ethylene glycol over promoted MoS2/MgAl2O4 catalysts

Dabros, Trine Marie Hartmann; Kramer, Hendrik; Høj, Martin; Grunwaldt, Jan-Dierk; Gabrielsend, Jostein; Jensen, Anker Degn

Publication date: 2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Influence of active phase loading in hydrodeoxygenation (HDO) of ethylene glycol over promoted MoS$_2$/MgAl$_2$O$_4$ catalysts

Trine M. H. Dabros1,2, Hendrik Kramer1,3, Martin Høj1, Jan-Dierk Grunwaldt4, Jostein Gabrielsen2, Anker Degn Jensen1,*

1 – Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark.
2 – Haldor Topsøe A/S, Kgs. Lyngby, 2800, Denmark.
3 – IWT Foundation Institute of Material Science, University of Bremen, Bremen, 28359, Germany.
4 – Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany.

* aj@kt.dtu.dk

1. Introduction
Catalytic fast hydropyrolysis can be used to convert solid lignocellulosic biomass into liquid fuels by combined fast pyrolysis and catalytic hydrodeoxygenation (HDO) [1]. The advantage of this technique is that the pyrolysis vapors can be deoxygenated and stabilized against polymerization immediately when formed, since fast pyrolysis occurs in the presence of an HDO catalyst and hydrogen. Promoted MoS$_2$ catalysts are active and selective for HDO [2]. Since the cellulosic part of biomass contributes to polymerization and coking [3], a key focus of the catalyst and process development is to investigate HDO of cellulose and hemicellulose derived compounds. Ethylene glycol (EG) represents these compounds and was used as model compound in this work.

2. Experimental
Catalysts (Ni- and Co-promoted MoS$_2$/MgAl$_2$O$_4$) where prepared at different active phase loading by incipient wetness impregnation followed by in-situ sulfidation in a fixed bed reactor setup, which was also used for activity testing. In activity tests, 0.5–4.0 g catalyst was loaded into the reactor, and ethylene glycol was fed at ≈ 0.15 mL/min giving a weight hourly space velocity (WHSV) of 2-19 gEG/(gCat-h). Activity tests were run for up to 172 h at 400 °C, a total pressure of 40 barg, 27 bar H$_2$, and a co-feed of H$_2$S typically around 550 ppm. Gaseous products were quantified with GC-TCD, while liquid products and unconverted EG were quantified with GC-MS/FID. Fresh and spent catalysts were analyzed with BET, TEM, ICP-OES, XRD, and Raman spectroscopy.

3. Results and discussion
The conversion of EG over the pure MgAl$_2$O$_4$ support (WHSV = 9 h$^{-1}$) showed that it catalyzed coupling reactions such as alcohol condensation, dehydration, and acetalization. The conversion of EG over low (L, 0.8-0.9 wt% Mo) and moderate (M, 2.8-3.4 wt% Mo) loading catalysts showed that Ni- and Co-MoS$_2$ catalyzed both HDO (giving ethane and ethylene (C$_2$)) and cracking (giving CO, CO$_2$, and CH$_4$(C$_4$)). There was a higher selectivity towards HDO as seen from the C$_2$/C$_1$ yield ratio of 1.1-1.5, independent of catalyst loading (see Table 1). The moderate loading catalysts showed superior hydrogenation activity (ethane formed rather than ethylene), whereas the low loading catalysts formed a mixture of ethylene and ethane during activity tests (see Table 1). The EG conversion was >90 % for all catalysts at an EG WHSV of 2 h$^{-1}$. Catalyst deactivation was observed for the low loading catalysts (WHSV = 2 h$^{-1}$), and by increasing the WHSV, deactivation could also be observed for the moderate loading catalysts (see Figure 1). Carbon deposition was the main reason for catalyst deactivation, determined by TEM, elemental analysis and Raman spectroscopy.

4. Conclusions
Ni-MoS$_2$ and Co-MoS$_2$ supported on MgAl$_2$O$_4$ is active and selective for HDO. The MoS$_2$ based active phase catalyzes HDO, but also cracking, with a C$_2$/C$_1$ yield ratio >1. The active phase loading and WHSV influences the hydrogenation activity and the level of deactivation.

Table 1. EG conversion (X) and selected carbon based yields (Y). WHSV = 2 h$^{-1}$ (for MgAl$_2$O$_4$, WHSV = 9 h$^{-1}$), TOS = 14-20 h. ETA: ethane. ETY: ethylene.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Loading [wt%]</th>
<th>X [%]</th>
<th>Y$_{ETA}$ [%]</th>
<th>Y$_{ETY}$ [%]</th>
<th>Y${C2}$/Y${C1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L) Ni-MoS$_2$</td>
<td>Mo:0.83</td>
<td>99</td>
<td>3.4</td>
<td>7.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Ni:0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L) Co-MoS$_2$</td>
<td>Mo:0.88</td>
<td>96</td>
<td>2.5</td>
<td>8.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Co:0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M) Ni-MoS$_2$</td>
<td>Mo:2.83</td>
<td>100</td>
<td>43</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Ni:0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M) Co-MoS$_2$</td>
<td>Mo:3.28</td>
<td>100</td>
<td>44</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Co:0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgAl$_2$O$_4$</td>
<td>-</td>
<td>25</td>
<td>0.2</td>
<td>0.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

References