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Abstract—Vehicle-Grid Integration (VGI) research may serve
to limit the self-induced adverse effects of electric vehicles (EVs)
in terms of additional grid loading, but also as to make the EV an
active asset in supporting a stable, economic power system based
on renewable energy. Any use of the vehicle for grid services
requires an accurate understanding of the user’s driving needs.
This paper proposes the introduction of a user profile, describing
the energy requirements for driving in terms of an energy
deadline, target and minimum. To explore the use of such a
profile, the paper analyses data from a Danish pilot project where
the driving patterns of ten electric Nissan e-NV200 vans are
investigated in terms of leave times and energy consumption. It
is shown that the data can be fitted with a log-normal distribution
that can be used to establish a per user profile which provides a
certain statistical probability of fulfilling the driving needs while
allowing an aggregator to optimize earnings. Initially, aggregators
may apply similar driving assumptions across an entire fleet.
Considering that the driving needs of individual EV owners are
different, statistical representations of the individual behaviour
may result in more flexibility, and thereby time, for providing grid
services. The paper quantifies the value of such added flexibility
based on the Danish market for frequency containment reserves.

I. INTRODUCTION

Electrification of the transportation sector will bring about
both challenges and opportunities to the power system. The
challenges will arise from the power system having to satisfy a
new demand for power and energy in a safe and timely manner
subject to a broad range of transportation needs. The opportu-
nities are in using the electric vehicle (EV) as a flexible load
and storage to not only limit the self-induced adverse effects in
terms of additional grid loading, but also make the EV serve as
an active asset in supporting a stable, economic power system
based on renewable energy. These challenges and opportunities
fall within Vehicle-Grid Integration (VGI) research and the
cars that are designed with technical capabilities to support the
power system can be called Grid Integrated Electric Vehicles
(GIV). Using Electric Vehicle Supply Equipment (EVSE),
enabling a bidirectional power exchange between EV and the
grid referred to as Vehicle-To-Grid (V2G), may strengthen the
EVs role in the power system.

Currently a portfolio of pilot projects is investigating the
possibilities of VGI [1–4] with a growing emphasis on field
testing with new series-produced, unmodified EVs supporting
V2G. With an increased focus on field testing, and the general
maturing of the technology, there is also a greater need to focus
on the most important stakeholder in VGI research - the EV

owner. It is prudent to understand if, and to what extend, the
EV may be used as a resource to the grid without any adverse
effects to the use for driving.

When an aggregator adds an EV to its portfolio, it may
initially heavily prioritize the EV owner’s driving needs as
a safety measure. An initial guess on driving requirements
may be based on other known customer profiles or direct
inputs from the EV owner. The analysis of historic driving
behavior may however allow the aggregator to define tailor-
made profiles over time to better explore user flexibility.

In the world’s first commercial V2G pilot [5], at the utility
company Frederiksberg Forsyning (FF) in Greater Copen-
hagen, the Parker project has access to more than a year
worth of data from a company fleet of electric Nissan e-
NV200 vans, which are used for both daily field trips and
for providing Frequency Containment Reserves (FCR) using
V2G when parked. Based on this case study it is possible to
define per user profiles for the ten e-NV200 drivers.

The main contributions of this study are as follows:
Firstly, the paper describes previous projects and studies

focusing on EV driving data and owner involvement in charg-
ing management. The findings of these studies are then used
when introducing a user profile with parameters determining
the driving needs, and resulting flexibility, of an EV user.

Secondly, the FF pilot project is described along with the
dataset used in this study.

Thirdly, an exploratory analysis based on FF fleet data is
carried out for the selected parameters of the user profile. The
assumed distributions for the parameters are described.

Finally, the paper explore the advantage of quantifying the
per-user flexibility when offering an ancillary service product
to the grid.

Ultimately the authors of this paper hope to contribute to
VGI research by emphasizing the benefit, for both the user and
the grid, in describing user behavior through data analysis.

II. RELATED WORK

This paper builds on previous studies on both EV service
provision to the grid and EV usage pattern analysis, and
the combination of the two when considering user-based
constraints in optimization and dispatch strategies.

A considerable amount of work has already gone into
describing the services an EV can provide to the power system.
The investigation spans from services provided on a local



level, aimed at the distribution system [6], to the services
aimed at a larger regional level and the associated power and
energy markets. One of the most profitable services currently
investigated is that of Frequency Containment Reserve (FCR)
[7]. Here an aggregated group of EVs provides frequency
regulation through an aggregator where the EVs collectively
respond to under- or over-frequencies by either charging or
discharging. This use was first investigated by Kempton et al.
[8, 9] in the US and has since been investigated for other
regions including the Nordic synchronous zone [10–12]. This
type of service is useful for understanding both the need
and value of EV usage analysis. When providing frequency
regulation an aggregator would be under a binding obligation
to deliver a certain power capacity for a certain duration and
need a detailed forecast on EV availability to make a suitable
bid in the market. Since frequency regulation is a market based
product, procured by the Transmission System Operator, it is
possible to quantify earnings both in aggregate and per EV
[7].

Concurrently, several studies have investigated the real-
world usage patterns of EV drivers [13–16]. Such studies
have aimed at uncovering both driving and plug-in patterns.
For grid service provision specifically, such data is needed to
define constraints in the optimization and dispatch methods
defined for each service. Describing the exact requirements of
the EV user will ensure that sufficient energy is available for
driving while allowing aggregators to optimize their operation
and earnings.

Initially, many service provision and optimization studies
had to rely on simple assumptions on EV availability and user
preferences or use constraints based on simulated data, e.g.
using Monte Carlo simulations to get the data to reflect the
stochastic nature of EV drivers [17]. While such assumptions
and simulations may be sufficient to prove the feasibility and
potential of certain services, field pilot studies as that of FF
allow for a better understanding of EV usage.

Some research has gone into more detail with the spe-
cific parameters important for predicting the user behaviour.
Kempton and Letendre [8] propose an intelligent charge-
discharge control with three settings controlled by the user,
which inspired the parameters used in this study. In [18] the
authors describe end-user charging services which include a
specific energy need and leave time per trip which has to
either be found by manual input from the user or be predicted.
By analyzing the actual behaviour profile, interview bias and
manual inputs by the user can be avoided.

All these studies emphasize the importance of knowing the
user behavior. To this end, the present study uses field data to
analyze and assess the per user flexibility.

III. USER PROFILE DEFINITION

As soon as a 3rd party (e.g., an EV aggregator) influences
the charging process of a vehicle, it becomes necessary to
understand the implications it may have on the owner’s
driving needs. A user flexibility profile is essentially a set
of parameters describing the driving needs of the user which

have to be observed by an aggregator. Setting such parameters
as accurately as possible helps guarantee driving requirements
to be fulfilled, while allowing an aggregator to optimize its
usage for grid services.

The aggregators use of the EV would require a number
of ’known plugins’, i.e., plugin sessions that recur in time
and where both duration and energy needs are predictable in
nature. Known plugins could for instance be ’night charging’
or ’workplace charging’. Each EV owner would then have one
or more known plugins which would each be described by the
following parameters:

• Energy target that describes the quantity of energy
needed between known plugins

• Energy deadline that describes the time where the En-
ergy Target has to be met prior to the expected leave time
of the vehicle.

• Minimum energy that describes a minimum energy
threshold which has to be satisfied throughout the plug-in
session.

These parameters are illustrated in Fig. 1. If an energy target
is chosen, which accurately represents the needed energy,
it will ensure sufficient range while reducing calender-based
aging of the battery by not fully charging the battery [19]. The
Minimum energy should be enough to cover an emergency trip
to, for instance, the nearest hospital.

Fig. 1. User profile parameters

The three presented parameters are required in order to
satisfy the EV owner’s needs, but when selling a service, the
aggregator also needs to know the full duration the EV will be
plugged in and available. The plug-in time is therefore equally
important as the other parameters for the aggregator, when it
comes to optimizing the service provision.

If the EV owner knows that it is necessary to drive earlier
or further than normally, it should be possible to override the
service provision and charge at full power.

Ultimately a user profile may start with a conservative
setting and then be gradually adjusted to the observed usage
over time.

IV. DATA ANALYSIS

This section starts by describing the FF dataset on which the
analysis is based, this is followed by an exploratory analysis



Fig. 2. Data analysis of FF data

describing the fleet’s leave time and energy use. Finally, the
data is fitted to a distribution which is used when selecting
a specific energy deadline and target for a user profile. The
steps of the data analysis are illustrated in Fig. 2.

A. The dataset

The data presented in this paper is collected from ten
ENEL bi-directional DC ±10 kW chargers owned by FF. Each
charger is used by a specific driver as part of the utilities
service fleet of ten electric Nissan e-NV200 vans (Fig. 3).

Fig. 3. e-NV200 vans at Frederiksberg Forsyning

In the following, each charger is numbered 1-10 with the
prefix FF (FF01, FF02 etc.). Each charger record data for
one specific vehicle and its user. Data from the EVSEs is
logged every second and the total period considered is 480
days. The data includes a state variable describing whether a
car is connected and the state-of-charge (SOC) of the battery,
communicated in kWh via the CHAdeMO protocol.

These variables are used to define a number of trips for each
EV. The leave and arrival times are based on changes in the
EVSE state and the energy consumption based on changes in
SOC. Since all data is recorded from the ten EVSEs the study
only considers plug-ins at the company parking lot.

Outages and error-states of the EVSE have necessitated
preprocessing the data to identify valid trips and remove
faulty measurements. Out of the 480 days, the chargers have
successfully logged around 450 days, except for charger FF08
that only has logged data for 290 days. The vehicles are only
used during the workdays, which are close to 300 days. The
number of logged days the EVs are driven are shown in Table
I. It can be seen that the EVs are only driven half of the
workdays on average, but with a large variance. The following

TABLE I
NUMBER OF DAYS WITH DRIVING OF THE DIFFERENT VEHICLES IN THE

DATASET

FF01 FF02 FF03 FF04 FF05 FF06 FF07 FF08 FF09 FF10
179 182 104 239 97 181 199 58 126 165

results are based on data consisting of the number of days seen
in table I for each of the EVs.

B. Exploratory analysis

In Fig. 4 the leave time is plotted for each car with the
mean and median values and percentiles. On average FF01
and FF03 leaves as the earliest and FF08 leaves the latest. The
intervals around the median deviate in size, e.g. for car FF01,
the interval is much smaller than for car FF09. By inspecting
the 99.5% and 0.5% percentiles it is noted that there is a
difference in the spread and therefore also in the uncertainty.
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Fig. 4. The median and mean leave time for each car with percentiles.

In Fig. 5 the energy consumption of each EV is shown
with the median and mean energy, and percentiles ranging
from 99.5% to 0.5% are plotted for the individual cars. In
general, the EVs have a similar median energy usage around
5 kWh, except for FF04 for which the usage is slightly higher
and FF08 for which it is a little lower. FF07 has the largest
99.5% percentile whereas the lowest percentiles do not differ
much between the EVs. This daily energy usage is very low
compared to the capacity of 24 kWh, which means that on
average less than 1/4 of the capacity is being used.

For both Fig. 4 and Fig. 5, the mean value is higher than
the median and the percentiles also indicate that the data is
positively skewed.

C. Distributions

The leave time and energy usage are fitted using a log-
normal distribution. While other distributions could be con-
sidered (e.g. Weibull), log-normal is found to provide a suffi-
ciently good fit for the purpose of this study. The histogram
and fitted distribution for leave time are shown in Fig. 6. Here,
only data from the first trip in a day is modelled due to the
fact that the energy deadline should be aimed at the first trip.
The leave time data is shifted by subtracting the earliest leave
time for a better fit to the log-normal distribution. The actual
leave time is then found by adding this time-shift again after
fitting the distribution. For the whole fleet, the shifted time is
5 hours and 30 minutes. The next fitted variable is the energy
usage, which is defined as the cumulative energy consumption
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Fig. 5. Energy usage per car with percentiles
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Fig. 6. Histogram of the leave time for the first trip in a day. The line shows
the fitted log-normal function with µ = 1.04 and σ = 0.53.

per day. For this fleet most of the EVs only have one main
trip per day and, if any, the remaining trips are very short.
The energy usage has a natural zero, which means that this
data does not have to be shifted. A histogram and the fitted
distribution for energy usage are shown in Fig. 7.

0 5 10 15 20
Energy usage pr. day [kWh]

0.00

0.05

0.10

0.15

De
ns

ity

Log-normal dist
Data (cum. energy)

Fig. 7. Histogram of the cumulated energy usage per day. The line shows
the fitted log-normal function with µ = 1.44 and σ = 0.79.

V. SELECTING PROFILES BASED ON PROBABILITY

This section presents the Cumulative Distribution Function
(CDF) for the FF fleet based on the log-normal distributions
described previously. Afterwards we use the CDF for two
vehicles to illustrate how specific energy targets and deadlines
can be determined - and to show how the found values may

differ and result in different degrees of flexibility. In Fig. 8
the CDF is shown for the energy need of the FF fleet. These
distributions are fairly similar across the fleet, except EV FF08
which deviates by having a higher density for lower values
and consequently could operate with a lower energy target.
The energy need for the fleet is between 1 kWh and 21 kWh
(99th percentile), where EV FF08 has a much smaller span
between 1 kWh and 13 kWh. The range of the energy need
differs from what was observed in the raw data (Fig. 5) and
is due to approximation errors in the log-normal fitting.

Fig. 9 shows the CDF for the leaving time of the fleet. The
distributions vary more between the EVs, than the distributions
of the energy need. The span of first trip leave times for the
fleet is between 6:00 and 12:00. This spread is an indication
that using individual energy deadlines may be especially
beneficiary, compared to using a confidence interval of the
whole group as we will see in section VI.

Fig. 8. CDF of the energy need

Fig. 9. CDF of the leave times

A. Selecting and comparing flexibility profiles for two vehicles

Out of the distributions presented in the last section we
randomly choose two vehicles; FF04 and FF07. To arrive at



Fig. 10. CDF for the leave times of FF04 and FF07.

a specific energy deadline for each we choose an arbitrary
percentile, in this case the 25th percentile. Ultimately these
percentiles reflect the trade off between using the vehicles
longer in performing grid services and the risk/inconvenience
faced by the owner. Selecting the 25th percentile for energy
deadline represents a greater risk, as based on the distribution,
a fourth of the leave times could happen prior to this time
in the morning. The CDF for the leave times of both cars is
depicted in Fig. 10.

It can be observed how choosing a low percentile results in
FF07 having an earlier deadline than FF04, while a higher
percentile gives a significantly later deadline to FF07, as
the slope of the CDF is significantly lower. The trade-off
between the inconvenience of the owner and the increased
availability depends on the variance of the users leaving time.
The deadlines found are 7:18 for FF04 and 7:54 for car FF07.
The difference between the two energy deadlines means that
FF07 will theoretically be available for 36 minutes longer
to provide services than FF04. It can be seen that the two
different distributions for the car, together with the percentile
chosen, can have a great impact on the energy deadline found
for each vehicle. The same approach as above can be used
to identify the per vehicle energy targets. While the energy
targets also will differ between vehicles it may not be as
readily convertible to time available for grid services.

This simple comparison, based on leave times, shows that
there are individual differences which may be worth exploiting
for an aggregator providing frequency regulation services. In
the next chapter we seek to quantify the value of knowing
these individual profiles.

VI. ECONOMIC VALUE OF INDIVIDUAL PROFILING

FCR is the most profitable service that can be delivered by
EVs in combination with the ±10 kW chargers at FF, as it
is enumerated per power availability, not delivered energy. In
the Nordic synchronous zone the service provider is obligated
to deliver a proportional power response when the frequency

deviates from 50 Hz with full power at deviations of ±100
mHz. The service is symmetrical and requires availability of
an equal amount of upwards and downwards regulation.

There are clear price patterns depending on the time of the
day, with the highest prices during the night where fewest
power plants are in operation [7]. The capacity payment is on
average 35 EUR per MW available power per hour from 23:00
to 06:00 and, 25 EUR for the two hours before and after this
period and 15 EUR the rest of the day.

The grid code requires guarantee of delivery, which means
that failure to comply can result in a ban from the market.

There is uncertainty regarding the arrival time of the EV
and the leaving time the next morning, which determines the
service provision duration. Looking at the ten EVs as a group,
they would in 99% of the days be plugged in at 18:00 and
plugged out at 06:30, giving a 12:30 hour period. The 99th
percentile of arriving and the 1st percentile of leaving, however
looks different for the individual EVs than for the group, as
seen in table II. By calculating the available period of each EV

TABLE II
ADDED CONNECTION TIME COMPARED WITH GROUP DISTRIBUTION WITH

99% PROBABILITY

FF01 FF02 FF03 FF04 FF05
Plug in 17:45 16:45 18:00 15:50 18:15

Plug out 06:55 07:10 06:15 06:50 06:45
Added Time [min] +10 +85 -15 150 0

FF06 FF07 FF08 FF09 FF10
Plug in 17:45 16:10 17:50 18:10 17:30

Plug out 06:55 06:30 06:35 06:00 07:00
Added Time [min] +40 +50 -5 -40 +60

with a 99% confidence interval, the average period of service
availability can be increased with 40 minutes, compared to
calculating the same confidence interval of the whole group.
If the average EV has an increased reserve provision time
of 40 minutes per day with ±10 kW corresponds to 60
EUR per year, assuming 25 EUR/MW per hour. If the EVs
had individual owners, the most available EVs generate the
highest revenues and should receive a higher compensation.
The market is operated in hour blocks so the service can not
be bid for 40 minutes but, aggregating a large pool of EVs,
these partial hours can still be used.

Another uncertainty influencing the aggregation is that
during FCR provision, the frequency can be too high or too
low for extensive periods resulting in continuous charging or
discharging. If ignored, it can lead to storage units such as
batteries to become fully charged or depleted and thereby not
able to deliver the service. Because of this, the aggregator can
not bid the full power capacity for FCR as it is necessary to
allocate part of the capacity to controlling the SOC [12]. The
allocated power can maintain the SOC within certain limits
while providing the reserve and if the energy target is low
enough, the service can be delivered until the energy deadline
without a period allocated for pure charging. A low energy
target is preferable as it gives a larger acceptable range for
the SOC to move depending on the frequency.



Considering that the e-NV200 only has a 24 kWh battery,
it makes a large difference for the flexibility if the driver
needs less than 21 kWh or less than 12 kWh, as seen in
Fig. 5. Up to one hour of additional reserve provision can
be delivered if the EVs never charge to a level higher than the
99th percentile in Table III. One additional hour of reserve
provision with ±10 kW at the given time results in additional
90 EUR per year in revenue. The presented revenue is the pure

TABLE III
99TH PERCENTILE OF ENERGY REQUIREMENTS [KWH]

FF01 FF02 FF03 FF04 FF05 FF06 FF07 FF08 FF09 FF10
17 15 14 15 12 16 21 12 15 14

capacity payment and not including costs of energy losses due
to charger efficiency or wear of the battery.

VII. CONCLUSION

Frederiksberg Forsyning is unique in that it is the first
pilot project where EVs provide frequency regulation in a
commercial setting. Consequently, it also represents a scenario
where EV concurrently has to satisfy two critical applications,
the drivers need of transportation and the bids placed in the
FCR market by an aggregator.

To this end, this paper proposes defining a per user profile
consisting of the three parameters, minimum energy, energy
target and energy deadline. It is then shown how the latter two
parameters may be found by considering a CDF based on data
logged from the EV chargers.

This paper concludes by comparing the market availability,
and related profit, using individual deadlines vs using the same
energy deadline for the entire fleet. It is found that 40 minutes
of additional reserve can be delivered per EV, using individual
profiling with the same probability as when analyzing the
whole group, resulting in 60 EUR per year increased revenue.
It is also found that most of the EVs only need 60% SOC
for the daily driving requirements, giving significantly more
flexibility to the aggregator that does not need to reserve the
high paying hours in the morning for normal charging, which
can give an increase of revenue of up to 90 EUR per year.

This illustrates the advantage of moving from a conservative
guess to using a tailor-made per vehicle profile with an energy
target. The choice of percentile in the energy usage and leave
time distributions, on which the energy deadline and target is
based, reflect the risk-willingness of the user. Occasionally
the EV user may be forced to either proactively overwrite the
flexibility profile or accept having to wait for the EV to be
sufficiently charged. Any occasional inconvenience must be
related to the enumeration.

This study described the usage patterns of a specific com-
mercial fleet of EVs. It is necessary to expand the study to
other cases with other usage patterns.

Finally, there are seasonal changes in energy consumption
for an EV which could be studied further, for this study the
difference in energy consumption between summer and winter
was not found to be significant.
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