Mapping of individual dislocations with dark field x-ray microscopy

Published in:
Journal of Applied Crystallography

Link to article, DOI:
10.1107/S1600576718017302

Publication date:
2019

Document Version
Early version, also known as pre-print

Citation (APA):
Mapping of individual dislocations with dark field x-ray microscopy

Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark, European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France, OCAAS, J.F. Kennedylaan 3, 9060 Zelzate, Belgium, Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus Denmark, and Materialwissenschaft, TU Darmstadt, Alarich-Weiss-Strasse 2, 64287 Darmstadt, Germany.

Correspondence e-mail: hfp@fysik.dtu.dk

We present an x-ray microscopy approach for mapping deeply embedded dislocations in three dimensions using a monochromatic beam with a low divergence. Magnified images are acquired by inserting an x-ray objective lens in the diffracted beam. The strain fields close to the core of dislocations give rise to scattering at angles where weak beam conditions are obtained. We derive analytical expressions for the image contrast. While the use of the objective implies an integration over two directions in reciprocal space, scanning an aperture in the back focal plane of the microscope allows a reciprocal space resolution of $\Delta Q/Q < 5 \cdot 10^{-3}$ in all directions, ultimately enabling high precision mapping of lattice strain and tilt. We demonstrate the approach on three types of samples: a multi-scale study of a large diamond crystal in transmission, magnified section topography on a 140 nm thick SrTiO$_3$ sample and a reflection study of misfit dislocations in a 120 nm thick BiFeO$_3$ film epitaxially grown on a thick substrate. With optimal contrast, the full width of half maximum of the dislocations lines are 200 nm, corresponding to the instrumental resolution of the microscope. This is successfully applied to studies of dislocations in wafers (Hänscke et al., 2012). The limitation on resolution was overcome in a study with a polychromatic nano-beam by Hofmann et al. (2013), where all 9 strain components were mapped around one single dislocation with a resolution of 500 nm. The drawback in this case is that the method involves scanning the nano-beam with respect to the sample, a procedure that is relatively slow; hence generalization to mapping an extended network in 3D is not trivial. Recently, studies of dislocations within isolated nano-sized crystals have also been made by x-ray coherent techniques, e.g. Ulvestad et al. (2017), but again generalization to bulk samples is not straightforward.

Here we demonstrate a new approach to the three-dimensional characterization of defects within extended internal volumes of near-perfect single crystals, grains or domains. This is based on dark field x-ray microscopy, where an x-ray objective lens is placed in the diffracted beam (Simons et al., 2015; Simons et al., 2018a), providing an inverted and magnified projection image on a detector in the imaging plane. The spatial resolution and field-of-view is a function of the instrumental resolution of the microscope. The sample-to-objective and objective-to-detector distances. Similar to optical microscopy or TEM, the microscope is also associated with a Fourier/diffraction plane, the back focal plane. A detailed description of the optical properties in the image plane and back focal plane are given in Poulsen et al. (2017) and Poulsen et al. (2018), respectively.

In the following, we first summarise the acquisition geometry of dark field microscopy. Next we present two methods for...
mapping dislocations. The former is a magnified version of classical tomography. In the latter, an aperture is introduced in the back focal plane to define a certain range in reciprocal space. By scanning the aperture one can visualise the strain field around a dislocation, e.g. with the aim of identifying Burgers vectors. We describe the optical principles and demonstrate the use of the methods by three examples. The first is a full field transmission study of dislocations within the interior of a 400 µm thick synthetic diamond crystal, the second a magnified section topography study of a deformed SrTiO$_3$ sample and the third a full field reflection study of a 120 nm BiFeO$_3$ thin film.

2. The dark field x-ray microscopy set-up

Dark-field x-ray microscopy (Simons et al., 2015) is conceptually similar to dark-field transmission electron microscopy. The experimental geometry and operational principle are shown in Fig. 1: monochromatic x-rays with wavelength λ illuminate the diffracting object. The sample goniometer comprises a base tilt, μ, an ω rotation stage and two orthogonal tilts, χ and ϕ. The sample is oriented such that the Bragg condition is fulfilled, as defined by scattering vector \vec{Q}, scattering angle 2θ, and azimuthal angle η. An x-ray objective produces an inverted and magnified image in the detector/image plane. Furthermore, it acts as a band-pass filter in reciprocal space, which is crucial for polycrystalline specimens as spot overlap can be avoided in this way.

The method development has been motivated primarily by studies of polycrystalline samples. However, grains typically have to be aligned and studied one by one. For simplicity in this article we shall assume the sample to be a single crystal. Furthermore, following current practice the objective will be a compound refractive lens, CRL, (Snigirev et al., 1996) with identical parabolic shaped lenses with a radius-of-curvature R and a distance between lenslet centres of T.

Figure 1

Geometry of dark-field x-ray microscopy. The optical axis of the diffracted x-ray beam is defined by the centre of rotation of the sample goniometer, the centre of the objective and the point of normal incidence of the beam on the detector. \vec{Q} is the scattering vector, 2θ the scattering angle, μ, χ and ϕ are tilts, while ω is a rotation around \vec{Q}. d_1 is the distance from sample to entry point of the objective, d_2 the distance from the exit point of the objective to the detector and f_N the focal length of the objective. The laboratory coordinate system (x, y, z) is shown.

3D mapping can be obtained in two ways. Firstly, by using a line beam to illuminate slices of the sample one at the time, and subsequently stacking the 2D reconstructions. For some purposes this may be considered a magnified type of section topography, but the use of an x-ray objective implies a separation of angular and spatial degrees of freedom and as such adds additional advantages beyond the geometric magnification. Secondly, similar to the topo-tomography approach mentioned above, by using a full field illumination and recording projections from different viewing angles while rotating the sample about the scattering vector and subsequently using tomography type algorithms to reconstruct the 3D volume.

In Poulsen et al. (2017) a comprehensive description of optical properties of the image plan is provided, including expressions for the numerical aperture, NA, the focal length, f_N, the relation between magnification M, working distance d_1, and the distance between lens exit and detector plane d_2 as well as the field-of-view, direct space resolution and reciprocal space resolution. It is shown how the local variation in tilt of the scattering vector (i.e. the local pole figure or mosaic spread) can be mapped by stepping the sample through two orthogonal tilts. The first is either the base tilt, μ, or an equivalent rotation around η by a combination of tilts χ and ϕ — in both cases representing the ‘rocking’ of the sample in classical tomography. The second is an orthogonal tilt, enabled by another combination of χ and ϕ. This represents the ‘rolling’ of the scattering vector. The axial strain can be measured by a longitudinal ($\theta - 2\theta$) scan, where 2θ is varied by a combined translation and rotation of the objective and the detector.

Similar to classical light microscopy, the hard X-ray microscope is associated with a ‘Fourier plane’, placed at a distance of f_N from the exit of the CRL, cf. Fig. 1. The intensity distribution in this back focal plane (BFP) is equivalent to the distribution in the Fraunhofer far field limit. Poulsen et al. (2018) presents a complementary description for the optics properties of the BFP. Here an alternative approach to mapping the local tilt and local axial strain is provided under the heading of local reciprocal space mapping. By inserting an aperture in the BFP, the images acquired in the image plane will represent the direct space image corresponding to a certain (small) region in reciprocal space selected by this aperture. By translating the aperture within the BFP, the center position of the region can be varied. Similar to the operation of a TEM (Williams & Carter, 2009) the possibility to combine local information in direct and reciprocal space is seen as a major asset of dark field x-ray microscopy.

In the following we shall explore the microscope for mapping the axial and two off-diagonal strains around individual dislocations, corresponding to small variations in ϕ, χ and 2θ. We will primarily be concerned with the contrast and resolution within a single image: algorithms for the generalisation to 3D mapping will be presented elsewhere.

3. Methodology

3.1. Weak beam contrast mechanism

In this paper we shall assume that the scattering vector probed is in the proximity of a reciprocal lattice vector, \vec{Q}_0. We
will neglect effects due to (partial) coherence and assume that dynamical effects only take place within a sphere in reciprocal space around the lattice point, \hat{Q}_0, with radius r_{dyn}. By definition, when probing parts of reciprocal space with $|\hat{Q} - \hat{Q}_0| > r_{\text{dyn}}$ kinematical scattering applies. We shall use the phrase 'weak beam contrast'.

We shall not be concerned with the symmetry of the unit cell, and reciprocal space and strain tensors both refer to a simple cubic system. Including crystallography is straightforward in principle, but the more elaborate equations makes the treatment less transparent. Moreover, we will consider only the case of a synchrotron beam with an energy band $\Delta E / E$ of order 10^{-4} or less. Unless focusing optics are used the incoming beam will have a divergence of $\Delta \zeta \approx 0.1$ mrad or smaller. In comparison the numerical aperture of the objective is much larger, $NA \approx 1$ mrad.

In the following we estimate the width of the intensity profile202 from a single straight dislocation within this weak beam condition.203 This estimate will be used for a simple comparison204 with experimental data and for discussing current and future205 use. For reasons of simplicity we consider a fully illuminated straight screw dislocation with Burgers vector \vec{B} aligned with \hat{Q}_0 and parallel to the z-axis at $x = y = 0$. In this case, when rotating about \hat{Q}_0 the strain field and projections are invariant.206 In a classical dislocation model the non-zero strain components207 are

$$
\begin{align*}
\varepsilon_{xz} &= -\frac{B}{2 \pi} \frac{y}{x^2 + y^2}; \\
\varepsilon_{zy} &= \frac{B}{2 \pi} \frac{x}{x^2 + y^2}.
\end{align*}
$$

In general the strain components ε_{ij} associated with an isolated dislocation falls off as $\varepsilon_{ij} \approx \frac{B}{2 \pi r}$, where r is the radial distance from the core of the dislocation.

It is natural to introduce a reciprocal space coordinate system ($\hat{q}_{\text{rock}}, \hat{q}_{\text{roll}}, \hat{q}_{\text{sky}}$) with \hat{q}_{sky} parallel to \hat{Q}_0 and \hat{q}_{roll} parallel to the rolling direction and perpendicular to the vertical scattering plane. For the simple cubic system and the case introduced above of a screw dislocation aligned with \hat{Q}_0 and $\omega = 0$ we have

$$
\Delta Q_{\text{rock}} / |Q_0| = -\varepsilon_{xz}, \quad \Delta Q_{\text{roll}} / |Q_0| = -\varepsilon_{zy} \quad \text{and} \quad \Delta Q_{\text{sky}} / |Q_0| = -\varepsilon_{xy}.
$$

This shows that $\Delta Q_{\text{rock}} \ll \Delta Q_{\text{roll}} \approx \Delta Q_{\text{sky}}$ and the resolution function is in fact an oblate spheroid.

Comparing Eq. 1 to Eqs. 3 and 4, it appears that for experimentally relevant values of r, the intensities on the detector are the result of a 2D projection in reciprocal space: the objective’s NA effectively integrates over directions $\hat{q}_{2\theta}$ and \hat{q}_{roll}. In addition, the intensities are 1D projections in direct space, along the axis of the diffracted beam.

The resolution in the ‘rocking direction’ is in fact a convolution of the Darwin width of the sample and the divergence of the incoming beam. For simplicity, in Eq. 2 and throughout this manuscript we shall neglect the Darwin width.

Next, let us consider the model system of section 3.1. For $\omega = 0$ we integrate over e_{xy}. The intensity distribution is then a function of only two variables $I = I(y, e_{xz})$. We can determine the path length along x for a given y and strain interval de_{xz} by inverting Eq. 1 and differentiating dx/de_{xz}, see Appendix. As a result

$$
I(y, e_{xz}) \propto \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y - y') \left| \int_{u_1}^{u_2} \frac{g(e_{xz} - u)}{u^2 - \frac{u^2}{\sqrt{\pi/2}} - 1} \, du \right| \, dy';
$$

with

$$
\begin{align*}
u_1 &= -\frac{B}{2 \pi y'}; \\
u_2 &= -\frac{By'}{2 \pi (y'^2 + (T/2)^2)}.
\end{align*}
$$

Here $f(y)$ is the point spread function and $g(e_{xz})$ is the resolution in e_{xz}. In the following we shall assume both to be Gaussian distributions. T is the thickness of the crystal in the direction of the diffracted beam. \parallel symbolises the absolute value.

202 J. Appl. Cryst. (0000), 00, 000000

203 A.C. Jakobsen et al. · Mapping of dislocation networks
Simulations of the intensity profile across a screw dislocation are shown in Fig. 2 using parameters relevant to the experiments presented later, including a point spread function $f(y)$ with a FWHM of 180 nm, a strain resolution function $g(e_{za})$ with a FWHM of 0.02 mrad and a sample thickness of 400 μm.

With increasing offset in rocking angle the width of the curves asymptotically approaches the spatial resolution, while the peak position in direct space, r, and strain (angular offset) approximately follows $e = \frac{\theta}{2\pi}$.

For applications, a main challenge of any topography method is overlap of signal from dislocation lines. This effectively limits the approach in terms of dislocation density. It appears that in the weak beam contrast description the likelihood of overlap is determined by how far off the peak on the rocking curve one can go while still maintaining a contrast. The profiles shown in Fig. 2 are normalised. If not normalised, the amplitude of the profiles falls off rapidly with offset in rocking angle. Hence, signal-to-noise becomes critical.

Another concern is the nature of the tails of the distributions $f(y)$ and $g(e_{za})$. If these tails are intense, such as in Lorentzian distributions, the contrast deteriorates. Hence, being able to design and characterise the resolution functions is important. This can be achieved with an aperture in the BFP.

3.3. Mapping dislocations using an aperture in the back focal plane

Dark field imaging is one of the basic modalities of a TEM (Williams & Carter, 2009). By inserting an aperture in the back focal plane, one selects a certain region in reciprocal space and uses the diffracted signal within this region as contrast to image the sample. In Poulsen et al. (2018), we introduce the equivalent technique for hard x-ray microscopy. The relation between position (y_B, z_B) in the back focal plane, the angular offset in rocking angle $\phi - \phi_0$ and reciprocal space is

$$q_{\text{rock}} = \frac{\Delta Q_{\text{rock}}}{Q_0} = \frac{\cos(N\varphi)}{2 \sin(\theta)f_N} z_B \sin(\theta),$$

$$q_{\text{roll}} = \frac{\Delta Q_{\text{roll}}}{Q_0} = \frac{\cos(N\varphi)}{2 \sin(\theta)f_N} y_B,$$

$$q_\parallel = \frac{\Delta Q_\parallel}{Q_0} = \frac{\cos(N\varphi)}{2 \sin(\theta)f_N} z_B \cos(\theta),$$

with $\varphi = \sqrt{T^2 (\text{NA})}$ being a measure of the ‘refractive power’ of the lens, and f_N being the focal length. The last term in Eq. 7 and the $\cos(\theta)$ factor in Eq. 9 originates in the fact that the rocking scan is a movement in a direction which is at an angle of θ with the optical axis (the direction of the diffracted beam).

Unfortunately, if the aperture gap D is smaller than or comparable to the diffraction limit λ/NA, the spatial resolution in the imaging plane will deteriorate. On the other hand, using wavefront propagation in Poulsen et al. (2018) we demonstrated that the aperture will not influence the spatial resolution if the gap is sufficiently large. For a specific application introduced below the minimum gap is 80 μm. In order to provide a high resolution both in reciprocal space and in direct space, we therefore propose to move a square aperture with a sufficiently large gap in a regular 2D grid within the BFP and to regain reciprocal space resolution by a deconvolution procedure as follows: let the positions of the center of the slit be $(y_B, z_B) = D/m \cdot (m, n)$, with $m = -M, -M + 1, \ldots, M$ and $n = -M, -M + 1, \ldots, M$. For fixed rocking angle ϕ and for a given pixel on the detector, let the set of intensities measured in this detector pixel be $S_{m,n}$.

Now, consider the intensities $I_{m,n}$ for an aperture of size D/m, in the hypothetical case that the diffraction limit can be neglected. Moreover, assume the diffracting object is bounded such that there is no diffracted intensity outside the grid. Then, in the first quadrant we have: for $-M < m \leq 0$ and $-M < n \leq 0$

$$I_{m,n} = S_{m,n} - S_{m,n-1} - S_{m-1,n} + S_{m-1,n-1}.\quad (10)$$

For the other quadrants similar expressions can be established. Hence, using this simple difference equation we can generate high resolution q maps.

In Poulsen et al. (2018) it is also found that the FWHM of the resolution function in the BFP can be $\Delta Q_\parallel/Q_0 = 4 \cdot 10^{-5}$ or better in all directions, which is substantially smaller than the angular range of the diffracted beam. We conclude that by placing an aperture in the back focal plane we can generate a 5D data set. Hence, we can associate each detector point with a reciprocal space map. Then the only remaining integration is in the thickness direction in real space. We anticipate this enhanced contrast to be useful for identifying Burgers vectors and for improved forward models. In particular this may enable studies of samples with higher dislocation densities as one can separate dislocations that are overlapping in the greyscale images.

A significant simplification arises if we use the formalism of elasticity theory. Then each point (x_0, y_0, z_0) in the sample
is associated with one point in reciprocal space corresponding to the three strain components: \((e_x, e_y, e_z)\). Let the recorded intensities be \(I(\vec{q}, y_d, z_d)\) with \((y_d, z_d)\) being the detector coordinates, \(\vec{q} = (q_{\text{rock}}, q_{\text{roll}}, q_{\|})\) and strain vector \(\vec{e} = (e_x, e_y, e_z)\).

Then for \(\omega = 0\) we have

\[
I(\vec{q}, y_d, z_d) \propto \int \int dx, dy, dz \, f(y_d - u, z_d - v) \, g(x, u; M, v; M) \, d^3 \vec{q}.
\]

Here \(M\) is the magnification in the x-ray lens, \(f\) is the detector point-spread-function and \(g\) is the reciprocal space resolution function. With the square aperture in the BFP, the function \(g\) is a point-spread-function and \(M\) is the magnification in the x-ray lens.

With respect to implementation, it may also be possible to transfer additional TEM modalities. In particular, annular dark field imaging is a candidate for fast 3D mapping of dislocations.

Blocking the central beam may be an elegant way to remove spurious effects due to dynamical diffraction.

4. Experimental demonstrations

To illustrate the potential and challenges of our approach, we report on the results from three different type of use. Three samples were studied at beamline ID06 at the ESRF over two beamtimes and under slightly different configurations (as the beamline instrumentation evolved during this period).

In all cases, a Si (111) double monochromator was used to generate a beam with an energy bandwidth of \(\sigma_E = 0.6 \times 10^{-4}\) (rms). The goniometer with all relevant degrees of freedom, cf. Fig 1, is placed 58 m from the source. Pre-condensing is performed with a transfocator (Vaughan et al., 2011) positioned at a distance of 38.7 m from the source. For section topography, a 1D condenser was used to define a horizontal line beam. Otherwise, a slit defined the dimensions of the beam impinging on the sample. Two detectors were in use, firstly a nearfield camera, placed close to the sample, which may provide classical topographs and topo-tomograms without the magnification by the x-ray objective. Secondly, a farfield camera placed at a distance of \(\approx 5.9\) m for imaging the magnified beam in the image plane of the microscope. Both detectors were FRELON 2k \(\times\) 2k CCD cameras, which are coupled by microscope optics to a LAG scintillator screen. The objective comprised \(N\) identical parabolically shaped Be lenses with a radius of curvature \(R = 50\) mm and thickness \(T\). A square slit with adjustable gaps and offsets was placed in the BFP. The surface normals of all detectors and slits were aligned to be parallel to the optical axis. The nearfield camera and the aperture in the BFP could be translated in and out of the diffracted beam.

4.1. Transmission experiment

The sample was an artificially grown diamond plate, type IIa, with a thickness of 400\(\mu\)m, see Burns et al. (2009). It was mounted in a transmission Laue geometry. The 17 keV incident beam had a divergence (FWHM) of 0.04 mrad, and dimensions of 0.3 mm \(\times\) 0.3 mm. With \(N = 72\) and \(T = 2\) mm, the focal length of the objective was \(f_{\text{obj}} = 0.245\) m. The effective pixel size of the near and far-field detector was 0.62 \(\mu\)m and 1.4 \(\mu\)m, respectively. The magnification by the x-ray objective was measured to be \(M = 16.2\), implying a numerical aperture of \(NA = 0.643\) mrad and an effective pixel size of 93 nm. The detector was then binned \(2 \times 2\). Using Eqs. 2 – 4 the FWHMs of the reciprocal space resolution function in the three principal directions become \((\Delta q_{\text{rock}}, \Delta q_{\text{roll}}, \Delta q_{\|}) = (0.000062\,\text{Å}^{-1}, 0.0055\,\text{Å}^{-1}, 0.0055\,\text{Å}^{-1})\).

An in-plane \{111\} reflection was used for the study. The length of the diffraction vector and Burgers vector are \(|\vec{Q}_0| = 3.051\,\text{Å}^{-1}\) and \(|\vec{B}| = 2.522\,\text{Å}\), respectively. Using the formalism of Als-Nielsen & McMorrow (2011), the corresponding Pendellösung length, and Darwin width are \(\Lambda_E = 35\,\mu\text{m}\) and \(w_\theta = 0.0119\,\text{mrad}\) (FWHM), respectively. Hence, the incoming beam divergence dominates the Darwin width. The data set involved 36 \(\omega\) projections over a range of 360 degrees. For each projection images were acquired in a \(31 \times 31\) grid in rocking angle \(\mu\) (with steps of 0.0016 deg) and \(2\theta\) (steps of 0.0032 deg). Exposure times were 1 second.

Figure 3

Projection images of a large single crystal diamond in the transmission experiment. Nearfield detector image with no x-ray objective and corresponding dark field image acquired with the diffraction microscope, both for \(\mu = \mu_0 = 0.002\) deg. The magnification of the microscope is \(M = 16.2\). The direction of the rotation axis is marked by an arrow.
aperture of the objective. No contrast was detectable in the rolling and 2\nu-rotation in the radial direction (obtained by a simultaneous transverse strain of \pm \delta\mu at least that the signal is corrupted by dynamical diffraction effects until the angle from a specific location in microscope image. It appears that the signal is magnified the image without visible distortions.

Fig. 4 shows the diffracted signal as a function of rocking angle from a specific location in microscope image. It appears that the signal is corrupted by dynamical diffraction effects until at least \delta\theta = \pm 0.002\degree. The signal to noise ratio allows useful observations out to \delta\mu \approx \pm 0.008\%. Corresponding to a transverse strain of \pm 1.4 \cdot 10^{-4}. Similar plots of the intensity profile in the radial direction (obtained by a simultaneous trans-

The dominant cause of discrepancy is instead considered to be alignment of the microscope, that was problematic at the time due to the ad hoc character of the set-up.

4.2. Magnified section topography experiment

Within the weak beam regime one may reduce the likelihood of overlap of dislocations in the images by narrowing the incident beam in the vertical direction (see Fig. 2). By introducing a condenser we can furthermore improve the S/N ratio, at the expense of an increased divergence. In principle, one can adjust the height of the incoming beam to match the spatial resolution. 3D mapping can then be performed layer-by-layer. However, identifying points is more difficult than identifying lines, and 1D condensers providing a micrometer-sized beam tend to be more efficient than those producing a nanometer-sized beam. Hence, it may be optimal to operate with an incoming box beam having a large aspect ratio. We shall use the term ‘magnified section topography’ for this setting.

In this experiment, the sample was a wedge shaped piece of SrTiO_3, where surfaces had been polished mechanically. It was mounted in a transmission Laue geometry, using an in-plane focal spot.
Fig. 6 shows a raw image. The top point of the wedge is far to the left of this image. Generally speaking the weak beam scattering signal is confined to two regions, adjacent to the two external boundaries (top and bottom in the figure). We speculate that these have formed during polishing. As shown in the figure, at a certain distance to the top of the wedge, point dislocations are created that bridge the gap between the two surface layers. The intensity profile across one of these vertical lines is shown in Fig. 7. It exhibits a FWHM of 210 nm. In Fig. 6 in the vicinity of the prominent vertical dislocations a network of other dislocations pointing in near random directions are seen. Their linewidths are in some cases below 200 nm, but the statistics is poor. 200 nm is comparable to the spatial resolution of the instrument.

4.3. Reflection experiment

Mapping individual dislocations is of great interest also for films and buried layers. Often these have to be studied in a reflection geometry, as the X-rays cannot penetrate the substrate. The reflection geometry implies a parallax effect in the vertical direction and 3D mapping requires special algorithms, e.g. laminography (Hänsecke et al., 2012). To illustrate the potential of hard x-ray microscopy for such samples, we have studied misfit dislocations in BiFeO₃ thin films. First results are presented in Simons et al. (2018b). In short, individual dislocations are identified, and their axial strain field characterized by means of a \(\theta - 2\theta \) -scan: a combined translation and rotation of the sample, the objective and the far field detector. Here we report on additional work, where we illustrate the reciprocal space mapping introduced in section 3.3 by means of translating an aperture in the BFP. The ultimate aim for this type of study is to repeat the reciprocal space mapping for a set of \(\omega \) projection angles in order to reconstruct the strain field for each voxel in the sample. Addressing this challenge is an exercise in vector tomography (Schuster, 2008) and is outside the scope of this paper. Here a simple data analysis is presented for the case of one projection.

The sample was a 120 nm thick film of \((001) \)-oriented BiFeO₃, grown via pulsed laser deposition on a SrRuO₃ electrode layer and \((110) \)-oriented DyScO₃ single crystalline substrate. This was mounted for a reflection study on the \((002) \) reflection — at \(2\theta = 22.6 \) deg. In this case the 15.6 keV beam from the transfocator was only moderated by a slit close to the sample. The objective and detector configuration were identical to those of section 4.2. The aperture in the BFP had a square opening of 80 \(\mu \)m. Within the approach of section 3.3 this aperture was translated in a 2D grid with a step size of 30 \(\mu \)m. At each position a rocking scan was made with a step size of 0.001 deg and with exposure times of 2 seconds.

Deconvoluting the signal according to Eq. 10 each point in the sample plane was associated with a reciprocal space map. The voxel size of this map is \(\Delta Q/|Q| = (1.7 \cdot 10^{-5}, 1.6 \cdot \)}
\[10^{-4}, 1.6 \cdot 10^{-4} \] in the rock', roll and 2θ directions, respectively.

Zooming in on one dislocation, we illustrate in Fig. 8 the richness of the results obtained. To the left is shown the result with no aperture in the BFP for two offsets in rocking angle. The remainder of the subplots are corresponding results based on the aperture scan. For each point in the detector plane a Gaussianian fit was made to the intensity profile arising from scanning the aperture horizontally. Using Eq. 8 this is converted into a relative shift \(q_{\text{roll}} \). The fitted center position and width (FWHM) are shown in column 2 and 3, respectively. In columns 4 and 5 are shown the result of an analogous fit to the intensity profile arising from scanning the aperture vertically. Using Eq. 9 this is converted into a relative shift \(q_{\text{roll}} \). All shifts in turn can be directly related to strain components \(e_{xy} \) and \(e_{zz} \), while the rocking profile gives access to \(e_{zz} \).

The rocking profiles (not shown) exhibits a clear asymmetry, analogue to that shown in Fig. 4. The second column of Fig. 8 reveals that the rolling profiles have a similar left-right asymmetry. Near the dislocation core the profile has a dip in the center, evident as a large increase in the FWHM of the one-peak fit (third column). In contrast there is no noticeable variation in the longitudinal direction (columns 4 and 5). These findings are consistent with the response from the strain field from a single dislocation with the Burgers vector pointing in the direction of the surface normal, as anticipated for misfit dislocations.

\[8 \]

Figure 8
Images of a dislocation in a BiFeO₃ film acquired at an offset in rocking angle from the main peak of \(\phi = 0.01 \) deg (row above) and \(\phi = 0.015 \) deg (row below). The contrast is set differently in the two rows. First column: no aperture in the back focal plane; red is maximum intensity, blue is background. Other four columns: results from scanning an aperture of fixed size in the back focal plane. For each pixel on the detector, Gaussian type fits were made to the profile in the rolling and longitudinal directions, respectively. Shown are the center-of-mass positions and the FWHM in units of \(\Delta Q/|\phi| \), as determined by Eqs. 8 and 9. The unit on the axes is \(\mu \text{m} \) and refers to the detector plane.

5. Discussion
Dark field microscopy is fundamentally different from classical x-ray topography, as rays emerging in various directions from one point in the sample plane are focused onto a spot in the image plane, rather than leading to a divergent diffracted beam. This implies that the detector can be placed many meters away and that the space around the sample is limited by the objective, not the detector. Moreover, the high spatial resolution allows to visualise the core of the strain field. This simultaneously enables the dislocations to appear as thin lines and scattering to be sufficiently offset from the Bragg peak that weak beam conditions apply. Below we first present the perceived main limitations of the technique and discuss options to overcome these. Next we briefly outline the scientific perspective.

Dynamical diffraction effects. The ‘weak beam’ condition presented strongly simplifies the data analysis and interpretation. In practice, it is likely that dynamical or coherent effects needs to be considered in some cases. A treatment of dynamical scattering in the context of x-ray topography can be found in e.g. Gronkowski & Harasimowicz (1989) and Gronkowski (1991). However, as mentioned previously, the geometry of the technique and discuss options to overcome these.

Spatial resolution. The spatial resolution sets an upper limit on the density of dislocations that can be resolved. With increasing spatial resolution, one can monitor the strain and orientation fields closer to the core. At the same time, dynamical diffraction effects becomes smaller as one is probing parts of reciprocal space that are further away from the Bragg peak. In practice, the limitation of the technique is currently set by aberrations caused by the lens manufacture and by signal-to-noise considerations. With the possibility of providing a reciprocal space map for each voxel in the sample, cf. section 3.3, overlap of the diffraction signals from dislocation lines can be handled.

To our understanding there is no fundamental physics prohibiting a substantial increase in the spatial resolution of dark field microscope. With ideal CRL optics hard x-ray beams may be focussed to spot sizes below 10 nm (Schroer & Lengeler, 2005). Using zone plates as objectives, at x-ray energies below 15 keV, bright field microscopes are in operation with resolutions at 20 nm. For work at higher x-ray energies, there has recently been much progress with multilayer Laue lenses, which seem to promise imaging with superior numerical apertures and much reduced aberrations (Morgan et al., 2015). Finally, the next generation of synchrotron sources will be 10 – 100 times more brilliant than the current sources (Eriksson et al., 2014).
This will benefit both spatial resolution (via improved signal-to-noise) and time resolution.

Probing only one diffraction vector. As for any other diffraction technique, the contrast in visualizing the dislocations is proportional to \(\mathbf{Q} \cdot \mathbf{B} \). Dislocations with a Burgers vector nearly perpendicular to the \(\omega \) rotation axis are therefore invisible. In order to map all dislocations and/or to determine all components of the strain tensor one has to combine 3D maps acquired on several reflections.

Scientific outlook. The higher resolution in 3D offers new perspectives on dislocation geometry, including measurements of distances and dislocation curvatures (and the balance of line tension by local stresses). This may be relevant for models of dislocation dynamics, and the visualisation of dislocations under e.g. indentations. With respect to dynamical diffraction effects, we remind that extinction lengths for 30 keV x-rays are about 100 times larger than the corresponding extinction lengths for 200 keV electrons. This points to high resolution studies of dislocation dynamics in foils at least 10 \(\mu \)m thick.

Studies of dislocation structures within grains or domains are facilitated by the fact that dark field microscopy is easy to integrate with coarse scale grain mapping techniques such as 3D Dimensional X-ray Diffraction, 3DXRD (Poulsen & Fu, 2003; Poulsen, 2012; Hefferan et al., 2012) and Diffraction Contrast Tomography, DCT (King et al., 2008) (Ludwig et al., 2009).

6. Conclusion

We have demonstrated an x-ray microscopy approach characterizing individual dislocations in bulk specimens. The method combines high penetration power, a data acquisition time for 3D maps of minutes, and the possibility to study local internal regions by magnifying the images. The spatial resolution is in this proof-of-concept work 200 nm. The limitation is the quality of the focusing optics and the signal-to-noise ratio. With improved x-ray sources and optics this opens the door to studies with a substantially higher spatial resolution. The high resolution allows studies of samples with higher densities of dislocations, and at the same time it enables to probe the material at rocking angles with a large offset from the main peak, where the weak beam condition is fulfilled.

The method can be extended to mapping of the \(e_{xy} \), \(e_{yz} \) and \(e_{xz} \) fields by scanning a fixed gap aperture in the back focal plane of the objective and by rocking the sample.

We thank Jürgen Härtwig for use of the diamond crystal, Ying-Hao Chu and Nagarajan Valanoor for provision of the BiFeO\(_3\) sample and ESRF for beamtime. We are grateful for financial support from a DFF-FTP individual post doc program from Innovation Fund Denmark, grant 7039-00030B.

H.L. acknowledges financial support for an individual postdoc program from Innovation Fund Denmark, grant 7039-00030B.

References

J. Appl. Cryst. (0000) 00, 000000
