Mapping of individual dislocations with dark field x-ray microscopy

Jakobsen, Anders Clemen; Simons, Hugh; Ludwig, W.; Yildirim, C.; Leemreize, Hanna; Porz, L.; Detlefs, C.; Poulsen, Henning Friis
Published in:
Journal of Applied Crystallography

Link to article, DOI:
10.1107/S1600576718017302

Publication date:
2019

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
DOI: 10.1107/S1600576718017302
Mapping of individual dislocations with dark field x-ray microscopy

Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark, European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France, DCAS, J.F. Kennedylaan 3, 9060 Zelzate, Belgium, Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus Denmark, and Materialwissenschaft, TU Darmstadt, Alarich-Weiss-Strasse 2, 64287 Darmstadt, Germany.

We present an x-ray microscopy approach for mapping deeply embedded dislocations in three dimensions using a monochromatic beam with a low divergence. Magnified images are acquired by inserting an x-ray objective lens in the diffracted beam. The strain fields close to the core of dislocations give rise to scattering at angles where weak beam conditions are obtained. We derive analytical expressions for the image contrast. While the use of the objective implies an integration over two directions in reciprocal space, scanning an aperture in the back focal plane of the microscope allows a reciprocal space resolution of $\Delta Q/Q < 5 \cdot 10^{-3}$ in all directions, ultimately enabling high precision mapping of lattice strain and tilt. We demonstrate the approach on three types of samples: a multi-scale study of a large diamond crystal in transmission, magnified section topography on a 140μm thick SrTiO$_3$ sample and a reflection study of misfit dislocations in a 120 nm thick BiFeO$_3$ film epitaxially grown on a thick substrate. With optimal contrast, the full width of half maximum of the dislocation lines are 200 nm, corresponding to the instrumental resolution of the microscope.

Here we demonstrate a new approach to the three-dimensional characterization of defects within extended internal volumes of near-perfect single crystals, grains or domains. This is based on dark field x-ray microscopy, where an x-ray objective lens is placed in the diffracted beam (Simons et al., 2015; Simons et al., 2018a), providing an inverted and magnified projection image on a detector in the imaging plane. The spatial resolution and field-of-view is a function of the sample-to-objective and objective-to-detector distances. Since the magnification, which depends on the lens configuration and the sample-to-objective and objective-to-detector distances.

In the following, we first summarise the acquisition geometry of dark field microscopy. Next we present two methods for...
mapping dislocations. The former is a magnified version of classical topography. In the latter, an aperture is introduced in the back focal plane to define a certain range in reciprocal space. By scanning the aperture one can visualise the strain field around a dislocation, e.g. with the aim of identifying Burgers vectors.

We describe the optical principles and demonstrate the use of the methods by three examples. The first is a full field transmission study of dislocations within the interior of a 400 µm thick synthetic diamond crystal, the second a magnified section topography study of a deformed SrTiO$_3$ sample and the third a full field reflection study of a 120 nm BiFeO$_3$ thin film.

2. The dark field x-ray microscopy set-up

Dark-field x-ray microscopy (Simons et al., 2015) is conceptually similar to dark-field transmission electron microscopy. The experimental geometry and operational principle are shown in Fig. 1: monochromatic x-rays with wavelength λ illuminate the diffracting object. The sample goniometer comprises a base tilt, ω, a rotation stage and two orthogonal tilts, χ and ϕ. The sample is oriented such that the Bragg condition is fulfilled, as defined by scattering vector \vec{Q}, scattering angle 2θ, and azimuthal angle η. An x-ray objective produces an inverted and magnified image in the detector/image plane. Furthermore, it acts as a band-pass filter in reciprocal space, which is crucial for polycrystalline specimens as spot overlap can be avoided in this way.

The method development has been motivated primarily by studies of polycrystalline samples. However, grains typically have to be aligned and studied one by one. For simplicity in this article we shall assume the sample to be a single crystal. Furthermore, following current practice the objective will be a compound refractive lens, CRL, (Snigirev et al., 1996) with numerical aperture N_A from the exit of the CRL, cf. Fig. 1. The intensity distribution in this back focal plane (BFP) is equivalent to the distribution in the Fraunhofer far field limit. Poulsen et al. (2018) presents a complementary description for the optics properties of the BFP. Here an alternative approach to mapping the local tilt and local axial strain is provided under the heading of local reciprocal space mapping. By inserting an aperture in the BFP, the images acquired in the image plane will represent the direct space image corresponding to a certain (small) region in reciprocal space selected by this aperture. By translating the aperture within the BFP, the center position of the region can be varied. Similar to the operation of a TEM (Williams & Carter, 2009) the possibility to combine local information in direct and reciprocal space is seen as a major asset of dark field x-ray microscopy.

In the following we shall explore the microscope for mapping the axial and two off-diagonal strains around individual dislocations, corresponding to small variations in ϕ, χ, and 2θ. We will primarily be concerned with the contrast and resolution within a single image: algorithms for the generalisation to 3D mapping will be presented elsewhere.

3. Methodology

3.1. Weak beam contrast mechanism

In this paper we shall assume that the scattering vector probed is in the proximity of a reciprocal lattice vector, \vec{Q}_0. We
will neglect effects due to (partial) coherence and assume that
dynamical effects only take place within a sphere in reciprocal
space around the lattice point, \vec{Q}_0, with radius r_{dyn}. By definition,
when probing parts of reciprocal space with $|\vec{Q} - \vec{Q}_0| > r_{\text{dyn}}$
kineametical scattering applies. We shall use the phrase
‘weak beam contrast’.

We shall not be concerned with the symmetry of the unit cell,
and reciprocal space and strain tensors both refer to a simple
cubic system. Including crystallography is straightforward in
principle, but the more elaborate equations make the treatment
less transparent. Moreover, we will consider only the case of
a synchrotron beam with an energy band $\Delta E / E$ of order 10^{-4}
or less. Unless focusing optics are used the incoming beam
will have a divergence of $\Delta \theta \ll 1$ mrad. In comparison the numerical aperture of the objective is much larger $NA \approx 1$ mrad.

In the following we estimate the width of the intensity profile from a single straight dislocation within this weak beam con-
trast model. This estimate will be used for a simple comparison with experimental data and for discussing current and future use. For reasons of simplicity we consider a fully illuminated straight screw dislocation with Burgers vector \vec{B} aligned with
\vec{Q}_0 and parallel to the z-axis at $x = y = 0$. In this case, when rotating around \vec{Q}_0 the strain field and projections are invariant.
In a classical dislocation model the non-zero strain components $e_{i,j}$ are

$$e_{x,y} = -\frac{B}{2\pi} \frac{y}{x^2 + y^2}; \quad e_{y,z} = -\frac{B}{2\pi} \frac{x}{x^2 + y^2}.$$

In general the strain components $e_{i,j}$ associated with an isolated dislocation falls off as $e_{i,j} \approx \frac{B}{2\pi r}$, where r is the radial distance from the core of the dislocation.

It is natural to introduce a reciprocal space coordinate system $(\hat{q}_\text{rock}, \hat{q}_\text{roll}, \hat{q}_\parallel)$ with \hat{q}_\parallel parallel to \vec{Q}_0 and \hat{q}_roll parallel to the rolling direction and perpendicular to the vertical scattering plane. For the simple cubic system and the case introduced above of a screw dislocation aligned with \vec{Q}_0 and $\omega = 0$ we have
$\Delta Q_{\text{rock}} / |Q_0| = -e_{x,z}$, $\Delta Q_{\text{roll}} / |Q_0| = -e_{y,z}$ and $\Delta Q_{\parallel} / |Q_0| = -e_{x,z}$.

3.2. Mapping dislocations by magnified topography

As usual for imaging systems we will define the sample plane as a plane perpendicular to the optical axis, cf. Fig. 1. Let this be spanned by (\tilde{x}, \tilde{z}). It is natural to have another parameterisation of reciprocal space which is co-linear to this plane. For $\omega = 0$ we define this by coordinates $(\hat{q}_\text{rock}, \hat{q}_\text{roll}, q_\parallel)$, with \hat{q}_rock parallel to the optical axis.

It is shown in Poulsen et al. (2017) that in the coordinate system the resolution function is a Gaussian with principal axis aligned with the coordinate axes and with widths (FWHM) ΔQ_{rock}, ΔQ_{roll}, and ΔQ_{\parallel}. However, we shall consider the case of a weak beam contrast $\Delta \theta \ll 1$ mrad, which makes the treatment less transparent. Moreover, we will consider only the case of a synchrotron beam with an energy band $\Delta E / E$ of order 10^{-4} or less. Unless focusing optics are used the incoming beam will have a divergence of $\Delta \theta \ll 1$ mrad. In comparison the numerical aperture of the objective is much larger $NA \approx 1$ mrad.

In the following we estimate the width of the intensity profile from a single straight dislocation within this weak beam con-
trast model. This estimate will be used for a simple comparison with experimental data and for discussing current and future use. For reasons of simplicity we consider a fully illuminated straight screw dislocation with Burgers vector \vec{B} aligned with
\vec{Q}_0 and parallel to the z-axis at $x = y = 0$. In this case, when rotating around \vec{Q}_0 the strain field and projections are invariant. In a classical dislocation model the non-zero strain components are

$$\begin{align*}
e_{x,y} &= -\frac{B}{2\pi} \frac{y}{x^2 + y^2}; \\
e_{y,z} &= -\frac{B}{2\pi} \frac{x}{x^2 + y^2}.
\end{align*}$$

In general the strain components $e_{i,j}$ associated with an isolated dislocation falls off as $e_{i,j} \approx \frac{B}{2\pi r}$, where r is the radial distance from the core of the dislocation.

It is natural to introduce a reciprocal space coordinate system $(\hat{q}_\text{rock}, \hat{q}_\text{roll}, \hat{q}_\parallel)$ with \hat{q}_\parallel parallel to \vec{Q}_0 and \hat{q}_roll parallel to the rolling direction and perpendicular to the vertical scattering plane. For the simple cubic system and the case introduced above of a screw dislocation aligned with \vec{Q}_0 and $\omega = 0$ we have
$\Delta Q_{\text{rock}} / |Q_0| = -e_{x,z}$, $\Delta Q_{\text{roll}} / |Q_0| = -e_{y,z}$ and $\Delta Q_{\parallel} / |Q_0| = -e_{x,z}$.

3.2. Mapping dislocations by magnified topography

As usual for imaging systems we will define the sample plane as a plane perpendicular to the optical axis, cf. Fig. 1. Let this be spanned by (\tilde{x}, \tilde{z}). It is natural to have another parameterisation of reciprocal space which is co-linear to this plane. For $\omega = 0$ we define this by coordinates $(\hat{q}_\text{rock}, \hat{q}_\text{roll}, q_\parallel)$, with \hat{q}_rock parallel to the optical axis.

It is shown in Poulsen et al. (2017) that in this coordinate system the resolution function is a Gaussian with principal axes
aligned with the coordinate axes and with widths (FWHM) ΔQ_{rock}, ΔQ_{roll}, and ΔQ_{\parallel}.
Simulations of the intensity profile across a screw dislocation are shown in Fig. 2 using parameters relevant to the experiments presented later, including a point spread function \(f(y) \) with a FWHM of 180 nm, a strain resolution function \(g(e_{\parallel}) \) with a FWHM of 0.02 mrad and a sample thickness of 400 μm. With increasing offset in rocking angle the width of the curves asymptotically approaches the spatial resolution, while the peak position in direct space, \(r \), and strain (angular offset) approximately follows \(e = \frac{\Delta \varphi}{2\pi} \).

For applications, a main challenge of any topography method is overlap of signal from dislocation lines. This effectively limits the approach in terms of dislocation density. It appears that in the weak beam contrast description the likelihood of overlap is determined by how far off the peak on the rocking curve one can go while still maintaining a contrast. The profiles shown in Fig. 2 are normalised. If not normalised, the amplitude of the profiles falls off rapidly with offset in rocking angle. Hence, signal-to-noise becomes critical.

Another concern is the nature of the tails of the distributions \(f(y) \) and \(g(e_{\parallel}) \). If these tails are intense, such as in Lorentzian distributions, the contrast deteriorates. Hence, being able to design and characterise the resolution functions is important. This can be achieved with an aperture in the BFP.

3.3. Mapping dislocations using an aperture in the back focal plane

Dark field imaging is one of the basic modalities of a TEM (Williams & Carter, 2009). By inserting an aperture in the back focal plane, one selects a certain region in reciprocal space and uses the diffracted signal within this region as contrast to image the sample. In Poulsen et al. (2018), we introduce the equivalent technique for hard x-ray microscopy. The relation between the rocking angle \(\phi - \phi_0 \) and reciprocal space is

\[
q_{\text{rock}} = \frac{\Delta Q_{\text{rock}}}{Q_0} = \frac{(\phi - \phi_0) - \frac{\cos(N\varphi)}{2 \sin(\theta)} z_\theta \sin(\theta),}{7}
\]

\[
q_{\text{roll}} = \frac{\Delta Q_{\text{roll}}}{Q_0} = \frac{\cos(N\varphi)}{2 \sin(\theta)} f_N y_\theta, \quad 8
\]

\[
q_{\parallel} = \frac{\Delta Q_{\parallel}}{Q_0} = \frac{\cos(N\varphi)}{2 \sin(\theta)} z_\theta \cos(\theta), \quad 9
\]

with \(\varphi = \sqrt{T \over Q} \) being a measure of the ‘refractive power’ of the lens, and \(f_N \) being the focal length. The last term in Eq. 7 and the \(\cos(\theta) \) factor in Eq. 9 originates in the fact that rocking the sample is a movement in a direction which is at an angle of \(\theta \) with the optical axis (the direction of the diffracted beam).

Unfortunately, if the aperture gap \(D \) is smaller than or comparable to the diffraction limit \(\lambda/NA \), the spatial resolution in the imaging plane will deteriorate. On the other hand, using wave-front propagation in Poulsen et al. (2018) we demonstrated that the aperture will not influence the spatial resolution if the gap is sufficiently large. For a specific application introduced below the minimum gap is 80 μm. In order to provide a high resolution both in reciprocal space and in direct space, we therefore propose to move a square aperture with a sufficiently large gap in a regular 2D grid within the BFP and to regain reciprocal space resolution by a deconvolution procedure as follows: let the positions of the center of the slit be \((y_B, z_B) = D/M \cdot (m, n) \), with \(m = -M, -M + 1, \ldots, M \) and \(n = -M, -M + 1, \ldots, M \). For fixed rocking angle \(\phi \) and for a given pixel on the detector, let the set of intensities measured in this detector pixel be \(S_{m,n} \).

Now, consider the intensities \(I_{m,n} \) for an aperture of size \(D/M \), in the hypothetical case that the diffraction limit can be neglected. Moreover, assume the diffracting object is bounded such that there is no diffracted intensity outside the grid. Then, in the first quadrant we have: for \(-M < m \leq 0 \) and \(-M < n \leq 0 \)

\[
I_{m,n} = S_{m,n} - S_{m,n-1} - S_{m-1,n} + S_{m-1,n-1}. \quad 10
\]

For the other quadrants similar expressions can be established. Hence, using this simple difference equation we can generate high resolution \(q \) maps.

In Poulsen et al. (2018) it is also found that the FWHM of the resolution function in the BFP can be \(\Delta Q_{\|}/Q_0 = 4 \cdot 10^{-5} \) or better in all directions, which is substantially smaller than the angular range of the diffracted beam. We conclude that by placing an aperture in the back focal plane we can generate a 5D data set. Hence, we can associate each detector point with a reciprocal space map. Then the only remaining integration is in the thickness direction in real space. We anticipate this enhanced contrast to be useful for identifying Burgers vectors and for improved forward models. In particular this may enable studies of samples with higher dislocation densities as one can separate dislocations that are overlapping in the greyscale images.

A significant simplification arises if we use the formalism of elasticity theory. Then each point \((x_i, y_i, z_i) \) in the sample

Figure 2
Simulated intensity profile perpendicular to a screw dislocation with the offset in rocking angle in degrees as parameter. All curves are normalized to 1. See text.
is associated with one point in reciprocal space corresponding to the three strain components: \((e_x, e_y, e_z)\). Let the recorded intensities be \(I(\vec{q}, y_d, z_d)\) with \((y_d, z_d)\) being the detector coordinates, \(\vec{q} = (q_{\text{rock}}, q_{\text{roll}}, q_z)\) and strain vector \(\vec{e} = (e_x, e_y, e_z)\). Then for \(\omega = 0\) we have

\[
I(\vec{q}, y_d, z_d) \propto \int \int \int dx, du, dv f(y_d - u, z_d - v) \\
\int d^3 \vec{q} \, g(\vec{e}, u; \mathcal{M}, v; \mathcal{M}) - \vec{q}^2).
\]

Here \(\mathcal{M}\) is the magnification in the x-ray lens, \(f\) is the detector point-spread-function and \(g\) is the reciprocal space resolution function. With the square aperture in the BFP, the function \(g\) is a box function in two directions.

With respect to implementation, it may also be possible to transfer additional TEM modalities. In particular, annular dark field imaging is a candidate for fast 3D mapping of dislocations. Blocking the central beam ay be an elegant way to remove spurious effects due to dynamical diffraction.

4. Experimental demonstrations

To illustrate the potential and challenges of our approach, we report on the results from three different type of use. Three samples were studied at beamline ID06 at the ESRF over two beamtimes and under slightly different configurations (as the beamline instrumentation evolved during this period).

In all cases, a Si (111) double monochromator was used to generate a beam with an energy bandwidth of \(\sigma_{\text{e}} = 0.6 \cdot 10^{-4}\) (rms). The goniometer with all relevant degrees of freedom, cf. Fig 1, is placed 58 m from the source. Pre-condensing is performed with a transfocator (Vaughan et al., 2011) positioned at a distance of 38.7 m from the source. For section topography, a 1D condenser was used to define a horizontal line beam. Otherwise, a slit defined the dimensions of the beam impinging on the sample. Two detectors were in use, firstly a nearfield camera, placed close to the sample, which may provide classical topographs and topo-tomograms without the magnification by the x-ray objective. Secondly, a farfield camera placed at a distance of \(\approx 5.9\) m for imaging the magnified beam in the image plane of the microscope. Both detectors were FRELON 2k \(\times 300\) 2k CCD cameras, which are coupled by microscope optics to a LAG scintillator screen. The objective comprised \(N\) identical parabolically shaped Be lenses with a radius of curvature \(R = 50\) mm and thickness \(T\). A square slit with adjustable gaps and offsets was placed in the BFP. The surface normals of all detectors and slits were aligned to be parallel to the optical axis. The nearfield camera and the aperture in the BFP could be translated in and out of the diffracted beam.

4.1. Transmission experiment

The sample was an artificially grown diamond plate, type IIa, with a thickness of \(400\) mm, see Burns et al. (2009). It was mounted in a transmission Laue geometry. The 17 keV incident beam had a divergence (FWHM) of \(0.04\) mrad, and dimensions of \(0.3\) mm \(\times\) \(3\) mm. With \(N = 72\) and \(T = 2\) mm, the focal length of the objective was \(f_N = 0.245\) m. The effective pixel size of the near and far-field detector was \(0.62\) \(\mu\)m and \(1.4\) \(\mu\)m, respectively. The magnification by the x-ray objective was measured to be \(\mathcal{M} = 16.2\), implying a numerical aperture of \(NA = 0.643\) mrad and an effective pixel size of \(93\) nm. The detector was then binned \(2 \times 2\). Using Eqs. 2 – 4 the FWHMs of the reciprocal space resolution function in the three principal directions become \((\Delta q_{\text{rock}}, \Delta q_{\text{roll}}, \Delta q_{\text{z}}) = (0.000062\) \(\text{Å}^{-1}, 0.0055\) \(\text{Å}^{-1}, 0.0055\) \(\text{Å}^{-1}\)).

An in-plane \(\{111\}\) reflection was used for the study. The length of the diffraction vector and Burgers vector are \(|\mathcal{Q}_0| = 3.051\) \(\text{Å}^{-1}\) and \(|\vec{b}| = 2.522\) \(\text{Å}\), respectively. Using the formalism of Als-Nielsen & McMorrow (2011), the corresponding Pendellösung length, and Darwin width are \(\Lambda_g = 35\) \(\mu\)m and \(\omega_g = 0.0119\) mrad (FWHM), respectively. Hence, the incoming beam divergence dominates the Darwin width. The data set involved \(36\) \(\omega\) projections over a range of \(360\) degrees. For each projection images were acquired in a \(31 \times 31\) grid in rocking angle \(\mu\) (with steps of \(0.0016\) deg) and \(2\theta\) (steps of \(0.0032\) deg). Exposure times were 1 second.

Figure 3

Projection images of a large single crystal diamond in the transmission experiment. Nearfield detector image with no x-ray objective and corresponding dark field image acquired with the diffraction microscope, both for \(\mu = \mu_0 = 0.002\) deg. The magnification of the microscope is \(\mathcal{M} = 16.2\). The direction of the rotation axis is marked by an arrow.
The aperture of the objective.

to the convolution of the diffracted signal with the numerical

θ

'rocking' and 'longitudinal' contrast are validated. As expected

nal direction' — showed a very similar sensitivity. Hence, both

tion in the radial direction (obtained by a simultaneous transla-

verse strain of $\delta \mu$ at least ± 0.0057).

angle from a specific location in microscope image. It appears

field-of-view, FOV, is evident, as is the fact that the objective

intensity. The red lines indicate the interpolated position of the dislocation line.

as marked by the 5 pixel thick black lines. The lineplots are normalized to max

integrated intensity as function of distance perpendicular to the dislocation line,

A.C. Jakobsen et al.

Fig. 4 shows the diffracted signal as a function of rocking

angle from a specific location in microscope image. It appears

that the signal is corrupted by dynamical diffraction effects until

at least $\delta \mu = \pm 0.002^\circ$. The signal to noise ratio allows useful

observations out to $\delta \mu \approx \pm 0.008^\circ$, corresponding to a trans-

verse strain of $\pm 1.4 \cdot 10^{-4}$. Similar plots of the intensity profile

in the radial direction (obtained by a simultaneous transla-

tion in μ and 2θ by $\delta \mu = \frac{1}{2} \Delta 2\theta$) — also known as the ‘longitudi-

nal direction’ — showed a very similar sensitivity. Hence, both

‘rocking’ and ‘longitudinal’ contrast are validated. As expected

no contrast was detectable in the rolling and 2θ directions, due

to the convolution of the diffracted signal with the numerical

aperture of the objective.

Fig. 3 shows an image from the nearfield detector and the cor-

responding dark field image from the diffraction microscope.

The latter is inverted for ease of comparison. The difference in

field-of-view, FOV, is evident, as is the fact that the objective

magnifies the image without visible distortions.

Fig. 4 shows the diffracted signal as a function of rocking

angle from a specific location in microscope image. It appears

that the signal is corrupted by dynamical diffraction effects until

at least $\delta \mu = \pm 0.002^\circ$. The signal to noise ratio allows useful

observations out to $\delta \mu \approx \pm 0.008^\circ$, corresponding to a trans-

verse strain of $\pm 1.4 \cdot 10^{-4}$. Similar plots of the intensity profile

in the radial direction (obtained by a simultaneous transla-

tion in μ and 2θ by $\delta \mu = \frac{1}{2} \Delta 2\theta$) — also known as the ‘longitudi-

nal direction’ — showed a very similar sensitivity. Hence, both

‘rocking’ and ‘longitudinal’ contrast are validated. As expected

no contrast was detectable in the rolling and 2θ directions, due

to the convolution of the diffracted signal with the numerical

aperture of the objective.

4.2. Magnified section topography experiment

Within the weak beam regime one may reduce the likelihood

of overlap of dislocations in the images by narrowing the inci-
dent beam in the vertical direction (see Fig. 2). By introducing

a condenser we can furthermore improve the S/N ratio, at the

expense of an increased divergence. In principle, one can adjust

the height of the incoming beam to match the spatial resolu-
tion. 3D mapping can then be performed layer-by-layer. How-
ever, identifying points is more difficult than identifying lines,

and 1D condensers providing a micrometer-sized beam tend to

be more efficient than those producing a nanometer-sized beam.

Hence, it may be optimal to operate with an incoming box beam

having a large aspect ratio. We shall use the term ‘magnified

section topography’ for this setting.

In this experiment, the sample was a wedged shaped piece

of SrTiO$_3$, where surfaces had been polished mechanically. It was

mounted in a transmission Laue geometry, using an in-plane
{110} reflection for the study. The 15.6 keV beam was condensed by a CRL with 55 1D Be lenslets to generate a beam (FWHM) of size $4.2 \times 300 \, \mu m^2$. The objective configuration was in this case $N = 45$, $T = 1.6 \, mm$, leading to a focal length of $f_N = 0.406 \, m$. The measured x-ray magnification was 12.32 and consequently the numerical aperture had an rms width of $\sigma_a = 0.24 \, mrad$. The far-field detector had an effective pixel size of 122 nm. A rocking scan was made over a range of 0.5 deg, with 70 steps and exposure times of 1 second.

Fig. 6 shows a raw image. The top point of the wedge is far to the left of this image. Generally speaking the weak beam scattering signal is confined to two regions, adjacent to the two external boundaries (top and bottom in the figure). We speculate that these have formed during polishing. As shown in the figure, at a certain distance to the top of the wedge, point dislocations are created that bridge the gap between the two surface layers. The intensity profile across one of these vertical lines is shown in Fig. 7. It exhibits a FWHM of 210 nm. In Fig. 6 in the vicinity of the prominent vertical dislocations a network of other dislocations pointing in near random directions are seen. Their linewidths are in some cases below 200 nm, but the statistics is poor. 200 nm is comparable to the spatial resolution of the instrument.

![Figure 6](image6.png)

Figure 6
A raw image from the magnified section topography study of a SrTiO$_3$ wedge sample where surfaces near regions (top and bottom) are deformed due to mechanical polishing. The offset in rocking angle is 0.5 mrad. One of the dislocations is marked by an arrow.

4.3. Reflection experiment

Mapping individual dislocations is of great interest also for films and buried layers. Often these have to be studied in a reflection geometry, as the X-rays cannot penetrate the substrate. The reflection geometry implies a parallax effect in the vertical direction and 3D mapping requires special algorithms, e.g. laminography (Hänsecke et al., 2012). To illustrate the potential of hard x-ray microscopy for such samples, we have studied misfit dislocations in BiFeO$_3$ thin films. First results are presented in Simons et al. (2018b). In short, individual dislocations are identified, and their axial strain field characterized by means of a ‘$\theta - 2\theta$-scan’: a combined translation and rotation of the sample, the objective and the far field detector. Here we report on additional work, where we illustrate the reciprocal space mapping introduced in section 3.3 by means of translating an aperture in the BFP. The ultimate aim for this type of study is to repeat the reciprocal space mapping for a set of ω projection angles in order to reconstruct the strain field for each voxel in the sample. Addressing this challenge is an exercise in vector tomography (Schuster, 2008) and is outside the scope of this paper. Here a simple data analysis is presented for the case of one projection.

The sample was a 120 nm thick film of $\langle 001 \rangle$-oriented BiFeO$_3$, grown via pulsed laser deposition on a SrRuO$_3$ electrode layer and $\langle 110 \rangle$-oriented DyScO$_3$ single crystalline substrate. This was mounted for a reflection study on the (002) reflection — at $2\theta = 22.6$ deg. In this case the 15.6 keV beam from the transfocator was only moderated by a slit close to the sample. The objective and detector configuration were identical to those of section 4.2. The aperture in the BFP had a square opening of 80 μm. Within the approach of section 3.3 this aperture was translated in a 2D grid with a step size of 30 μm. At each position a rocking scan was made with a step size of 0.001 deg and with exposure times of 2 seconds.

Deconvoluting the signal according to Eq. 10 each point in the sample plane was associated with a reciprocal space map. The voxel size of this map is $\Delta Q/|Q| = (1.7 \cdot 10^{-5}, 1.6 \cdot$
504 $10^{-4}, 1.6 \cdot 10^{-4}$ in the rock
t-, roll and 2θ directions, respec-
505 tively.

506 Zooming in on one dislocation, we illustrate in Fig. 8 the rich-
507 ness of the results obtained. To the left is shown the result with
508 no aperture in the BFP for two offsets in rocking angle. The
509 remainder of the subplots are corresponding results based on
510 the aperture scan. For each point in the detector plane a Gauss-
511 sian fit was made to the intensity profile arising from scanning
512 the aperture horizontally. Using Eq. 8 this is converted into a
513 relative shift q_{roll}. The fitted center position and width (FWHM)
514 are shown in column 2 and 3, respectively. In columns 4 and 5
515 are shown the result of an analogous fit to the intensity pro-
516 file arising from scanning the aperture vertically, Using Eq. 9
517 this is converted into a relative shift q_{roll}. All shifts in turn can
518 be directly related to strain components e_{yz} and e_{zz}, while the
519 rocking profile gives access to e_{zx}.

520 The rocking profiles (not shown) exhibits a clear asymme-
521 try, analogue to that shown in Fig. 4. The second column of
522 Fig. 8 reveals that the rolling profiles have a similar left-right
523 asymmetry. Near the dislocation core the profile has a dip in the
524 center, evident as a large increase in the FWHM of the one-peak
525 fit (third column). In contrast there is no noticeable variation in
526 the longitudinal direction (columns 4 and 5). These findings are
527 consistent with the response from the strain field from a single
528 dislocation with the Burgers vector pointing in the direction of
529 the surface normal, as anticipated for misfit dislocations.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure8.png}
\caption{Images of a dislocation in a BiFeO$_3$ film acquired at an offset in rocking angle from the main peak of $\phi = 0.01\,\text{deg}$ (row above) and $\phi = 0.015\,\text{deg}$ (row below). The contrast is set differently in the two rows. First column: no aperture in the back focal plane; red is maximum intensity, blue is background. Other four columns: results from scanning an aperture of fixed size in the back focal plane. For each pixel on the detector, Gaussian type fits were made to the profile in the rolling and longitudinal directions, respectively. Shown are the center-of-mass positions and the FWHM in units of $\Delta Q/|Q|$, as determined by Eqs. 8 and 9. The unit on the axes is μm and refers to the detector plane.}
\end{figure}

530 5. Discussion

531 Dark field microscopy is fundamentally different from classical
532 x-ray topography, as rays emerging in various directions from
533 one point in the sample plane are focused onto a spot in the
534 image plane, rather than leading to a divergent diffracted beam.
535 This implies that the detector can be placed many meters away
536 and that the space around the sample is limited by the objective,
537 not the detector. Moreover, the high spatial resolution allows
538 to visualise the core of the strain field. This simultaneously
539 enables the dislocations to appear as thin lines and scattering
540 to be sufficiently offset from the Bragg peak that weak beam
541 conditions apply. Below we first present the perceived main lim-
542 itations of the technique and discuss options to overcome these.
543 Next we briefly outline the scientific perspective.

544 **Dynamical diffraction effects.** The ‘weak beam’ condition
545 presented strongly simplifies the data analysis and interpreta-
546 tion. In practice, it is likely that dynamical or coherent effects
547 needs to be considered in some cases. A treatment of dynami-
548 cal scattering in the context of x-ray topography can be found in e.g. Gronkowski & Harasimowicz (1989) and Gronkowski
549 (1991). However, as mentioned previously, the geometry of
550 data acquisition is fundamentally different in a microscope. A
551 dynamical treatment of the scattering of a dislocation line in the
552 context of a microscope exists for TEM (Hirsch et al., 1960),
553 but has to the knowledge of the authors yet to be general-
554 ized to x-ray microscopy. In a heuristic manner with dark field
555 microscopy we attempt to overcome the issue with dynamical
effects in two ways:

556 - By improving both the spatial and angular resolution
557 it becomes possible to probe parts of reciprocal space
558 which are further from q_{dyn}.

559 - By combining projection data from a number of view-
ing angles we anticipate that ‘dynamical effects can be
560 integrated out’. Similar strategies have led the electron
561 microscopy community to apply annular dark-field imaging
562 for providing accurate crystallographic data.

563 **Spatial resolution.** The spatial resolution sets an upper limit
564 on the density of dislocations that can be resolved. With increas-
ing spatial resolution, one can monitor the strain and orientation
565 fields closer to the core. At the same time, dynamical diffraction
566 effects becomes smaller as one is probing parts of reciprocal
567 space that are further away from the Bragg peak. In practice,
568 the limitation of the technique is currently set by aberrations
569 caused by the lens manufacture and by signal-to-noise consid-
600 erations. With the possibility of providing a reciprocal space
601 map for each voxel in the sample, cf. section 3.3, overlap of
602 the diffraction signals from dislocation lines can be handled.

563 To our understanding there is no fundamental physics pro-
563 hibiting a substantial increase in the spatial resolution of dark
563 field microscope. With ideal CRL optics hard x-ray beams may
563 be focused to spot sizes below 10 nm (Schroer & Lengeler,
563 2005). Using zone plates as objectives, at x-ray energies below
563 15 keV, bright field microscopes are in operation with resolu-
563 tions at 20 nm. For work at higher x-ray energies, there has
563 recently been much progress with multilayer Laue lenses, which
563 seem to promise imaging with superior numerical apertures and
563 much reduced aberrations (Morgan et al., 2015). Finally, the
563 next generation of synchrotron sources will be 10 – 100 times
563 more brilliant than the current sources (Eriksson et al., 2014).

563
This will benefit both spatial resolution (via improved signal-to-noise) and time resolution.

Probing only one diffraction vector. As for any other diffraction technique, the contrast in visualizing the dislocations is proportional to \(\mathbf{Q} \cdot \mathbf{B} \). Dislocations with a Burgers vector nearly perpendicular to the \(\omega \) rotation axis are therefore invisible. In order to map all dislocations and/or to determine all components of the strain tensor one has to combine 3D maps acquired on several reflections.

Scientific outlook. The higher resolution in 3D offers new perspectives on dislocation geometry, including measurements of distances and dislocation curvatures (and the balance of line tension by local stresses). This may be relevant for models of dislocation dynamics, and the visualisation of dislocations under e.g. indentations. With respect to dynamical diffraction effects, we remind that extinction lengths for 30 keV x-rays are about 100 times larger than the corresponding extinction lengths for 200 keV electrons. This points to high resolution studies of dislocation dynamics in foils at least 10 \(\mu \)m thick.

Studies of dislocation structures within grains or domains are facilitated by the fact that dark field microscopy is easy to integrate with coarse scale grain mapping techniques such as 3D X-ray Diffraction, 3DXRD (Poulsen & Fu, 2003; Poulsen, 2012; Hefferan et al., 2012) and Diffraction Contrast Tomography, DCT (King et al., 2008) (Ludwig et al., 2009).

6. Conclusion

We have demonstrated an x-ray microscopy approach to characterizing individual dislocations in bulk specimens. The method combines high penetration power, a data acquisition time for 3D maps of minutes, and the possibility to study local internal regions by magnifying the images. The spatial resolution is in this proof-of-concept work 200 nm. The limitation is the quality of the focusing optics and the signal-to-noise ratio. With improved x-ray sources and optics this opens the door to studies with a substantially higher spatial resolution. The high resolution allows studies of samples with higher densities of dislocations, and at the same time it enables to probe the material at rocking angles with a large offset from the main peak, where the weak beam condition is fulfilled.

The method can be extended to mapping of the \(e_{zx} \), \(e_{zy} \) and \(e_{zz} \) fields by scanning a fixed gap aperture in the back focal plane of the objective and by rocking the sample.

H.L. acknowledges financial support for an individual postdoc program from Innovation Fund Denmark, grant 7039-00030B.

References

J. Appl. Cryst. (0000), 00, 00000
