Advanced Wound Care Adhesives with New Functional Properties

Chiaula, Valeria; Mazurek, Piotr Stanislaw; Nielsen, Anders Christian; Tornøe, Jens; Skov, Anne Ladegaard

Publication date: 2018

Document Version: Peer reviewed version

Link back to DTU Orbit

Advanced Wound Care Adhesives with New Functional Properties

Valeria Chiaula1,2, Piotr Mazurek1, Anders Christian Nielsen2, Jens Tornøe2, Anne Ladegaard Skov*1

\textit{1. DTU, Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Lyngby, Denmark}
\textit{2. Coloplast A/S, Wound & Skin Care, Humlebæk, Denmark}

Broadly, for wounds to heal, a moist, clean and warm environment is required. A moist wound bed easily promotes growth factors and many cell types including epithelial cells to migrate, facilitating wound edge contraction. Thus, appropriate dressings play a significant role to create and maintain such environment.[1] Silicone adhesives are silicone elastomers which are not fully crosslinked but remain close to the gelation threshold (i.e. with a low crosslinking degree).[2, 3] Within the field of advanced wound care, silicone adhesives are currently the preferred, state-of-the-art adhesive system due to its gentle skin adhesion properties. However, due to their hydrophobic nature, current silicone adhesives for wound care face challenges when it comes to moisture handling. Here, we propose a novel, skin-friendly, industrially relevant glycerol-silicone hybrid adhesive with improved moisture handling due to the incorporation of emulsified glycerol (Figure 1). Various parameters will be taken into account in order to develop a relevant adhesive, in particular glycerol content, glycerol domain size and adhesive thickness to allow for a controlled moisture absorption.

\textbf{Figure 1}: Glycerol domains in the silicone matrix characterized by optical microscope.
