Characterisation of scintillator-based gamma spectrometers for determination of sample dose rate in OSL dating applications

Bu, Minqiang; Murray, Andrew Sean; Kook, Myung Ho; Helsted, Louise Maria; Buylaert, Jan-Pieter; Thomsen, Kristina Jørkov
Published in:
Radiation Measurements

Link to article, DOI:
10.1016/j.radmeas.2018.07.003

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Characterisation of scintillator-based gamma spectrometers for determination of sample dose rate in OSL dating applications

Minqiangu Bu, Andrew Sean Murray, Myungho Kook, Louise Maria Helsted, Jan-Pieter Buylaert, Kristina Jørkov Thomsen

A recent inter-comparison (Murray et al., 2015) has helped to highlight variability in the measurement of dose rate between luminescence laboratories. Part of this variability probably reflects the difficulties of homogenising and dissolving samples so that the < 500 mg used in e.g. ICP-MS and NAA is representative. High resolution gamma spectrometry is the obvious alternative because it can measure samples 100-1000 times larger, but the instrumentation is low-throughput, high capital and running cost, and requires skilled personnel to maintain operation over many years. Here we investigate the potential of traditional low-cost, low maintenance alternatives based on a 3” × 3” NaI(Tl) scintillation crystal. The temperature stability is investigated, and a linear (with intercept) correction for spectra drift based on the 1.46 MeV peak from 40K and the ~100 keV composite X-ray peak from uranium and thorium is shown to minimise this problem. Using a calibration based on wax impregnated standards, the minimum detection limits (MDL) are 25 Bq/kg (40K), 4.8 Bq/kg (238U), 2.5 Bq/kg (232Th) for 250-300 g of sample; systematic deviations around the expected values are also shown to be acceptable as the MDL is approached. Finally, we compare the activity concentrations and resulting dry dose rates derived from our NaI-based system with those from routine high resolution gamma spectrometry, and conclude that the new analytical facility is very suitable for accurate and precise dose rate determination.

1. Introduction

Low resolution gamma spectrometry was the laboratory technique of choice for many years, but more recently it has largely been relegated to field measurements, having almost completely been superseded by high resolution germanium-based detectors in the laboratory. Nevertheless, low resolution spectrometry remains much cheaper, requires less maintenance and labour, and, at least at high activity concentrations, is capable of accurate analyses. A recent inter-comparison (Murray et al., 2015) has helped to highlight variability in the measurement of dose rate between luminescence laboratories. Here we investigate whether low resolution spectrometry could provide analyses of natural activity concentrations of sufficient accuracy and precision for use in the dosimetry calculations in luminescence age determination.

It is well known that photomultiplier tubes (e.g. Plettner et al., 2011) and NaI(Tl) crystals are temperature sensitive (e.g. Moszynski et al., 2006). This causes gain drift and thus movement of the gamma spectrum during measurement. This temperature dependence must be compensated for before the spectra can be analysed further. Different methodologies have been applied to correct for drift in gamma spectra, either off-line (Casanovas et al., 2012; Mitra et al., 2016) or on-line using e.g. a separate 214Am source (Marett et al., 1976), a 137Cs reference source (Borg et al., 1985) or the 40K signal present in the sample spectra (Qin et al., 2012).

Here we outline the results of using an off-line gain-correction method based on two widely spaced but ubiquitous peaks, the complex X-ray peak from uranium and thorium at ~100 keV and the 1.46 MeV gamma emission from 40K. Experiments first investigate the dependence of peak position on temperature by counting a mixed 40K, 238U and 232Th sample at different temperatures. Based on the results of these experiments, a drift correction algorithm is developed to correct the spectra from 40K, 238U and 232Th calibration standards, background, and unknown samples to a uniform energy scale.

An improved three-energy-window approach is then used to analyse the drift-corrected spectra, to allow efficiency calibration and for derivation of activity concentrations in unknown samples. Minimum detection limits (MDL) are investigated, and the accuracy of the analyses
as the MDL is approached is discussed. Finally we calculate the 40K, 238U and 232Th activity concentrations in 20 natural samples, previously analysed using high resolution gamma spectrometry, and compare the activity concentration analyses and the resulting dry dose rates.

2. Materials and methods

2.1. Experimental setup

The scintillator detector used in this paper is a 3” × 3” NaI(Tl) crystal (Harshaw) connected to a digital tube base (TB-5, Amptek) consisting of a digital pulse processor (DPP), a charge sensitive pre-amplifier, a multichannel analyzer (MCA), and power supplies (low voltage and high voltage). The detector and MCA are all contained within a 10 cm thick lead shield. The gamma spectra from NaI(Tl) detector were acquired with the DppMCA software from Amptek. DoseRateAnalyzer software (developed in-house based on MATLAB) is used for drift corrections, 40K, 238U and 232Th efficiency calibration, activity concentration analysis and dose rate calculation. In order to evaluate the performance of the NaI(Tl) detector and the accuracy of the algorithm we employ, the samples were also measured using our standard high resolution gamma facility (Murray et al. these proceedings). Because of the different detector dimensions, these required separately prepared samples for counting, but both the wax/sediment couples and monitored by a thermocouple data logger (USB TC-08, Pico Technology, UK). Only the temperature of the air between two heaters at position D, as illustrated in Fig. 1(b), was used as a feedback to control the temperature of the heater. This approach not only simplifies the temperature control algorithm, but also prevents the overheating of the whole system, especially the more vulnerable detector.

Samples are ground to < 200 μm and mixed with high viscosity wax (Bottle wax, blend 1944, British Wax Refining Company) at a typical mass ratio of 1:2 (wax:sample), to give a typical sample mass of 250–300 g. Sample and calibration standards are cast in a cup-shaped geometry, with wall thickness 10 mm, internal diameter 80 mm and length 60 mm (Fig. 1(a)). When inverted, the cup fits over the top of the NaI detector. At the energies of interest, the dependence of self-attenuation on sample mass for all likely mixtures of wax:sample is < 2% (Murray et al. these proceedings).

Uranium and thorium calibration standards were prepared by diluting the appropriate certified reference material BL-5 (7.09 ± 0.03% U) (NRCAN-1) or OKA-2 (2.893 ± 0.058% Th) (NRCAN-2) in low activity quartz sand, then mixing with wax to give individual parent activities of ~800 Bq per cup. For potassium calibration standards, analytical grade K2SO4 (14.20 Bq/g assuming stoichiometry, purity given as 100.4%) was mixed directly with wax to give ~2700 Bq per cup. From calculation the expected uncertainties arising from weighing are < < 1%. Three standards were prepared from separate dilutions for each radionuclide. A background sample cup was prepared by casting pure wax. In addition, a mixed sample was prepared by diluting BL-5 and OKA-2 in K2SO4 to give a sample cup containing ~2700 Bq 40K and ~ 70 Bq 238U and 232Th. The peaks of interest in the spectrum of this mixed sample cup were used as reference peaks for drift correction of all spectra from unknown samples and 40K, 238U and 232Th calibration standards.

Note that our NaI(Tl) spectrometer is insensitive to the photons emitted by the first part of the 238U series (all low energy and/or low intensity). It mainly detects photons emitted by 228Ra short-lived daughters. One of the purposes of mixing the sample in wax is to fully retain all 228Ra, so that after some period of storage (here typically > 20 days) 228Ra and all short-lived daughters are in secular equilibrium with 228Ra. The degree of secular equilibrium between 238U and 228Ra is in general unknown; in this study, we assume 228Ra activity concentration equal to 238U activity concentration. All uranium series analyses are therefore referred to as measurements of uranium.

2.2. Methodology

2.2.1. Peak area analysis: an improved three-window approach

We adopted and improved the standard three-window approach (e.g. Desbarats and Killeen, 1990) to calculate 40K, U series and Th series (KUT) activities; these are shown as three vertical bands in Fig. 2, where spectra of the three calibration standards and a background spectrum are presented. In most KUT analyses using low resolution detectors, apart from measuring the 1.46 MeV 40K peak, it is a standard practice to measure the 1.76 MeV 214Bi line from the U series, and the 2.61 MeV line from 208Tl in the Th series. This is because these high energy peaks are well separated and do not suffer from significant cross-contamination from the other spectra. Unfortunately, this is at the cost of sensitivity; a typical 3” × 3” cylindrical crystal is relatively insensitive to such high energy photons, and for small samples in laboratory analysis, the count rates are low. Here we have chosen rather to use the 239 keV line from 214Pb (Th series) and 352 keV line from 214Pb (U series) (together with the 1.46 MeV 40K peak); these are two of the most intense peaks in the U series and Th series spectra (Fig. 2, lowest energy group). However, because of the relatively low resolution of a NaI(Tl) crystal, to obtain an accurate measurement of these closely spaced low energy gamma rays, precise correction for peak drift is of particular importance. This is discussed in detail in the next section.
2.2.2. Gamma spectra drift correction

In the development of a drift correction algorithm, the effect of the main factor controlling drift, temperature, must be characterised. In this study, all the spectra were collected first for a certain period (i.e. 20 h), and the drift correction algorithm was then applied to the final spectra.

Following Casanovas et al. (2012), for a given PMT high voltage and amplifier gain we make two assumptions concerning energy drift in our system:

(i) that the channel into which a pulse derived from a particular photon energy is counted is only dependent on the temperature, as described below.

\[C_k = C_{0k} \times f_i(T_k), \quad i = 1, 2, \ldots, 1024 \]

where \(C_0 \) and \(C_k \) are the channel positions at temperature \(T_0 \) and \(T_k \), respectively, and \(f_i(T_k) \) is a ratio only dependent on temperature \(T_k \). The total number of channels in this study is 1024.

(ii) that the relative channel displacement due to temperature change \(\Delta T \) is same for all channels.

\[f_1(T_k) \approx f_2(T_k) \approx \ldots \approx f_{1024}(T_k) \approx f(T_k) \]

In order to evaluate the second assumption, the mixed \(^{40}\text{K}, \, ^{238}\text{U}, \, ^{232}\text{Th} \) sample was measured at different fixed temperatures of 25, 30, 35, 40, 45 and 50 °C, respectively for 20 h. Each time the set temperature was changed to the next value (e.g. from 30 to 35 °C), we waited for another 20 h to allow the temperature in the whole system to reach thermal equilibrium before counting started. Fig. 3 shows the actual temperature variation (\(\Delta T \)) on the top surface of the detector during 20 h of continuous counting at the various fixed temperatures. It appears that the temperature of the detector can be controlled to a \(\Delta T \leq 0.4 \) °C. Unsurprisingly, the maximum temperature change occurred at \(\sim 25 \) °C, when the heater was actually switched off and the temperature of the whole system was drifting below or above a nominal room temperature (e.g. 25 °C). With such a small temperature variation, five peaks of interest (identified in Fig. 2) have, from low to high energy, moved in 20 h by only 0.13, 0.12, 0.12, 0.12, and 0.12%, respectively.

The dependence of peak position on temperature for six different peaks is shown in Fig. 4. All data are well represented by straight lines and there is no significant dependence of slope on energy; over the entire energy range of interest the gain change ratio, represented by relative slopes (RS) of the fitted lines in Fig. 4, is \(-0.301 \pm 0.004 \)%/°C (\(n = 6 \)) above room temperature, confirming the validity of the second assumption made above.

Fig. 2. Illustration of the improved three-window approach. Three shaded vertical bands counting from left to right, denote \(^{232}\text{Th}, \, ^{238}\text{U} \) and \(^{40}\text{K} \) energy windows of interest, respectively, for calculating the calibration constants. The spectra of \(^{40}\text{K}, \, ^{238}\text{U} \) and \(^{232}\text{Th} \) calibration standards and background are shown in both logarithmic scale (four top spectra, left y axis) and linear scale (four bottom spectra, right y axis). The spectra on the linear scale show the prominent 239 keV peak (\(^{212}\text{Pb}, \, \text{Th series} \)) and 352 keV peak (\(^{214}\text{Pb}, \, \text{U series} \)); compare with the intensities of the 2.61 MeV peak (\(^{208}\text{Tl}, \, \text{Th series} \)) and 1.76 MeV peak (\(^{214}\text{Bi}, \, \text{U series} \)).

We next test the accuracy with which a simple linear peak position correction can be undertained. An intercept is included in this correction, to allow for the possibility that the MCA offset has not been exactly zeroed. First a reference spectrum was collected at a fixed temperature (\(T_0 \), 30 °C) using the mixed \(^{40}\text{K}, \, ^{238}\text{U}, \, ^{232}\text{Th} \) sample (see above). In this reference spectrum, the positions of the composite X-ray peak at \(\sim 100 \) keV, and \(^{40}\text{K} \) peak at 1.46 MeV were selected as reference peaks. In general, the correction assumes a linear relationship with an intercept:

\[
\begin{bmatrix}
C_{\text{Drift,pl}} \\
C_{\text{Drift,pl2}}
\end{bmatrix}
\times
\begin{bmatrix}
C_{\text{ratio}} \\
C_{\text{Intercept}}
\end{bmatrix}
= \begin{bmatrix}
C_{\text{Ref,pl}} \\
C_{\text{Ref,pl2}}
\end{bmatrix}
\]

where \(C_{\text{Drift,pl}} \) and \(C_{\text{Drift,pl2}} \) are the centroids of selected peaks in the drifted spectrum, while \(C_{\text{Ref,pl}} \) and \(C_{\text{Ref,pl2}} \) are the centroids of corresponding peaks in the reference spectrum. \(C_{\text{ratio}} \) is the linear correction factor and \(C_{\text{Intercept}} \) is the intercept correction.

Finally the drifted channels are corrected by:

\[
C_{\text{corrected,pl}} = C_{\text{Drift,pl}} \times C_{\text{ratio}} + C_{\text{Intercept}}, \quad i = 1, 2, \ldots, 1024
\]

where \(C_{\text{Drift,pl}} \) are the original uncorrected channels and \(C_{\text{corrected,pl}} \) are the corrected channels; the latter are fractional and are finally rounded to integer values.

With the corrected channels, the counts in each original channel \(C_{\text{Original}} \) were interpolated into the corrected channel in the in-
house developed DoseRateAnalyzer software. During the drift correction, the spectrum is actually either compressed when $C_{\text{ratio}} < 1$ or expanded when $C_{\text{ratio}} > 1$, causing narrowing or broadening of peaks of interest, respectively. Therefore, the corrected counts $\text{Count}_{\text{Corrected}}$ in the corrected channels are adjusted by dividing the counts in the original channels by C_{ratio} to compensate the changing of the counts in each channel during drift correction. Therefore:

$$\text{Count}_{\text{Corrected}} = \frac{\text{Count}_{\text{Original}}}{C_{\text{ratio}}}, \ i = 1, 2, \ldots, 1024$$ \hspace{1cm} (5)

Because the 40K, 238U and 232Th calibration standards and unknown samples all have different characteristic peaks, selection of reference peaks is dependent on the spectrum to be drift corrected. For unknown samples containing 40K, 238U and 232Th, drift correction employs the ubiquitous 100 keV (X-ray) and 1.46 MeV (40K) emissions (this also applies to background spectra). This is not possible when correcting the gamma spectra from calibration standards; in the 40K standard spectrum, the X-ray peak is not detectable, and so the 1.46 MeV (40K) and the 2.61 MeV (Th series) peaks are used (the 2.61 MeV peak is present as a result of the high energy background contribution). For the 238U calibration standard with negligible 40K, we employ the X-ray peak and the 214Bi peak (1.76 MeV, U series). Finally, for 232Th calibration standard, we use the X-ray peak and the 208Tl peak (2.61 MeV). This ensures that the peaks of interest, especially the 239 keV and 352 keV peaks from the 232Th and 238U series, are bracketed by the peaks used for drift correction.

3. Results and discussion

3.1. Drift correction results

Fig. 5 shows a series of gamma spectra (bottom group) measured using the mixed 40K, 238U, 232Th sample with the temperature fixed at 25, 30, 35, 40, 45 and 50 °C. The peaks in the spectrum shift towards lower energies as the temperature increases. The positions of the two reference peaks at 100 keV (X-ray peak) and 1.46 MeV (40K peak) were used to establish a linear correction factor with an intercept, resulting in corrected spectra shown in the stacked upper group of spectra in Fig. 5. The enlarged insets clearly show the accuracy of the algorithm used for spectra drift correction over the entire energy range of interest (from the X-ray peak to the Th series 2.61 MeV peak). It is also observed from Fig. 5 that there are some amplitude differences in the corrected spectra at higher energies, even though the peak position is aligned well. Fortunately this is negligible in the lower energy region where the peaks of interest are located.

3.2. Calibration and calculation of activity concentrations in unknown samples

The calibration standard cups were each counted for 20 h, drift corrected, corrected for the (negligible) background contribution, and the relevant count rates in the integration areas of interest are then derived from all spectra. These count rates were divided by the known sample activity concentrations and counting time (in ks), to give the calibration constants C_c in the three-window matrix:

$$C_c = \begin{bmatrix} K_c & U_c & Th_c \\ K_c & U_c & Th_c \\ K_{Th} & U_{Th} & Th_{Th} \end{bmatrix}$$ \hspace{1cm} (6)

along with their uncertainties:

$$\text{Un}_{C_c} = \begin{bmatrix} \text{Un}_{K_c} & \text{Un}_{U_c} & \text{Un}_{Th_c} \\ \text{Un}_{K_c} & \text{Un}_{U_c} & \text{Un}_{Th_c} \\ \text{Un}_{K_{Th}} & \text{Un}_{U_{Th}} & \text{Un}_{Th_{Th}} \end{bmatrix}$$ \hspace{1cm} (7)

To reduce the contribution from dilution/casting of the standards, three samples of each calibration standard, K1-3, U1-3 and Th1-3 were cast, counted and analysed. The individual coefficients in the C_c matrix were obtained by averaging three individual coefficients from three similar calibration standards. For example, to obtain an average K_c, K_u and K_{Th}, the count rates from K1, K2 and K3 standards were calculated individually, using a single spectrum of 238U and 232Th. Then:
and the corresponding counting uncertainties are:

$$C_{K} = \begin{bmatrix} K_K \\ K_U \\ K_{Th} \end{bmatrix} = \begin{bmatrix} (K_{1K} + K_{2K} + K_{3K})/3 \\ (K_{1U} + K_{2U} + K_{3U})/3 \\ (K_{1Th} + K_{2Th} + K_{3Th})/3 \end{bmatrix}$$

$$U_{n_{K}} = \begin{bmatrix} U_{n_{K}} \\ U_{n_{U}} \\ U_{n_{Th}} \end{bmatrix} = \begin{bmatrix} (U_{n_{K_{1K}}} + U_{n_{K_{2K}}} + U_{n_{K_{3K}}})/3 \\ (U_{n_{K_{1U}}} + U_{n_{K_{2U}}} + U_{n_{K_{3U}}})/3 \\ (U_{n_{K_{1Th}}} + U_{n_{K_{2Th}}} + U_{n_{K_{3Th}}})/3 \end{bmatrix}$$

The uncertainty related to the 40K, i.e., $U_{n_{K}}$ includes the
counting uncertainty and the original material manufacturer’s uncertainty Un_{MK} (0.40% for 40K), therefore:

$$
Un_{CC} = \left[\frac{Un_{K_{CC}} + Un_{MK_{CC}}}{\sqrt{Un_{K_{CC}}^2 + Un_{MK_{CC}}^2}} \right] \sqrt{Un_{KK_{CC}} + Un_{MK_{CC}}}
$$

(10)

The same procedure was applied also to U1-3 and Th1-3 to obtain averaged coefficients Cc_U and Cc_T, and their corresponding uncertainties Un_{CC}. The averaged coefficients in the Cc matrix and their uncertainties in the Un_{CC} matrix, together with the background count rates for our detector are summarised in the supplementary Table S1.

Knowing Cc, one can calculate the activity concentrations Ac in an unknown sample by solving the linear equation:

$$
S = Cc \times Ac
$$

(11)

Where $S = \begin{bmatrix} S_K \\ S_U \\ S_{Th} \end{bmatrix}$ is the array of total counts in 40K, 238U and 232Th energy windows of sample spectrum after subtracting the background, and $Ac = \begin{bmatrix} Ac_K \\ Ac_U \\ Ac_{Th} \end{bmatrix}$ is the array of 40K, 238U and 232Th activity concentrations contained in the unknown sample. The uncertainties of the 40K, 238U and 232Th activity concentrations were also calculated during solving the linear equation (11) by the in-house developed DoseRateAnalyzer software.

3.3. Minimum detection limit (MDL)

Minimum detection limits for 40K, 238U and 232Th activity concentrations are one of the most important specifications of a gamma spectrometer intended for measuring dose rates in dating applications.

To measure these experimentally, the active mixed standard (containing ∼2700 Bq 40K, ∼70 Bq 238U and 232Th) was first counted for various lengths of time t, of 30, 60, 120, 300, 600, 1200, 2400, 4500, 9000 and 72000 s, all at room temperature. These spectra were saved individually. Secondly, the background cup was counted for 72000, 71970, 71940, 71880, 71700, 71400, 70800, 69600, 67500, 63000 s, all at room temperature, and the spectra saved. All 20 spectra were then corrected for drift before one sample spectrum (e.g. 30 s) and the corresponding background spectrum (e.g. 71970 s) were summed to give a total counting time of 20 h (72000 s). This gave us a series of spectra equivalent to those that would have been obtained from a series of samples of well-known relative activity concentrations, all counted for 20 h. The expected activity concentration (A_{EXP}) corresponding to the counting time t of each simulated sample was calculated from the activity concentration measured for 20 h (A_{MEAS_20}).

$$
A_{EXP} = A_{MEAS_20} \times \frac{t}{72000}
$$

(12)

The combined spectra were analysed as described above and the analyses summarised in Fig. 6(a–f). For simplicity, we define the MDL as the value of A_{EXP} expected to have a corresponding uncertainty of 30%. Based on Fig. 6(a–c), the MDLs for 40K, 238U and 232Th are 25, 4.8 and 2.5 Bq/kg, respectively; especially for 40K, these concentrations lie well below those found in most sediments.
3.4. Activity concentration and dose rate determination in geological samples

Finally we evaluate the performance of our spectrometer, and the accuracy of the algorithm used to calculate the activity concentration of unknown samples, by comparison of our analyses with those from a high resolution facility (Murray et al. these proceedings), over a range of activity concentrations (Fig. 7(a–c)); the resulting dry dose rates are compared in Fig. 7(d). All unknown samples, 40K, 238U and 232Th calibration standard cups, mixed 40K, 238U and 232Th drift correction reference cup and background cup were measured at a room temperature of $\sim 25^\circ$C, without any temperature control. The maximum temperature drift during each measurement is $\sim 0.4^\circ$C. The background counts were subtracted from every measured sample spectrum, before the activity concentrations of 40K, 238U and 232Th in each geological sample were calculated. As shown in Fig. 7(d), there is no suggestion of a systematic discrepancy in the total dry beta and gamma dose rates, and the average ratio of the dose rate determined on the NaI(Tl) system to that from the high resolution facility is 1.007 ± 0.005 (n = 20). The average relative random uncertainty on dose rates derived from the NaI(Tl) spectrometer is 1.3%, comparable with the 0.9% from the high resolution facility.

4. Conclusions

We have investigated the performance of a low cost, low maintenance laboratory spectrometry system based on a 3" × 3" NaI(Tl) crystal when determining burial dose rates in trapped charge dating. Gain drift is a potential problem, but this can readily be compensated for using a simple two-point correction algorithm. The MDLs for 40K, 238U, and 232Th are all less than typical activities found in most dating samples, and comparison of analyses of unknown samples with those from our high resolution facility are very satisfactory. The average ratio of dose rates measured on our NaI(Tl) scintillation spectrometer to those from HPGe spectrometry is 1.007 ± 0.005 (n = 20), and the typical relative random uncertainties in dose rate of 1.3% are comparable with those from high resolution spectrometry. We conclude that the new scintillation spectrometry system is a useful alternative laboratory method for determining dose rate at a significantly lower cost than high resolution spectrometry. This, combined with the large (and so more representative) sample size makes it a strong competitor to other analytical methods used in dating.

Acknowledgements

J.-P. Buylaert received funding from the European Research Council under the European Union Horizon 2020 research and innovation programme (grant number: ERC-2014-StG 639904 – RELOS).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.radmeas.2018.07.003.

References

