Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending with poly(dimethylsiloxane-co-methylphenylsiloxane) copolymers

Yu, Liyun; Jeppe Madsen, Peter; Boucher, Sarah; Skov, Anne Ladegaard

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending with poly(dimethylsiloxane-co-methylphenylsiloxane) copolymers

Liyun Yu, Peter Jeppe Madsen, Sarah Boucher, Anne Ladegaard Skov

Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract

Dielectric elastomers (DE) hold great promise as materials for novel, advanced electromechanical applications such as actuators, generators and sensors. Choosing the right polymer for the blending approach is of utmost importance to improve the electro-mechanical properties of DE. In this study, in our laboratories shows that sub-percentage additions of various aromatic substances can increase electrical breakdown strength significantly via voltage stabilisation, due to an electron trapping effect. In this work, improved electro-mechanical properties of silica-based dielectric elastomers were achieved by means of adding so-called “voltage-stabilisers” prepared from phenyl-functional copolymers prepared using oxyanionic ring-opening polymerisation of octamethylcyclotetrasiloxane (OD) and either tetramethoxytetraphenylcyclotetrasiloxane (T4) or octaphenylocyclotetrasiloxane (OD4). The concentration of the voltage stabiliser was varied both by changing the molar ratio between methyl and phenyl groups in the copolymer and also by varying the amount of copolymer mixed into a polydimethylsiloxane (PDMS) based elastomer. The phenyl-functional copolymers were generally found to disperse homogeneously in the PDMS matrix and this resulted in networks with improved electrical and mechanical properties.

Keywords: electro-mechanical properties, silicone dielectric elastomer, voltage stabiliser, phenyl functionalised copolymer, blend

1. Introduction

Fig.1 Unpolarised dipoles randomly aligned in the elastomeric matrix.

Fig.2 Re-orientation of polarised dipoles in the elastomeric matrix.

Fig.3 The enhancement of electrical breakdown strength due to electron-trapping: (a) a silicone elastomer with an aromatic group prefered to the silicone backbone and a coating of conductive electrodes on the top and bottom surfaces. (b) The existence of electrons at the interfaces between the elastomer and the compliant electrode in the presence of an electrical field. (c) The electron-trapping effect as a consequence of a collision between electrons and the phenyl group. (d) The formation of anisotropic radicals resulting from the disruption of the cloud of d-electrons of the phenyl group.

2. Experimental

Fig.4 Anionic Ring-Opening Polymerisation of cyclosiloxanes in the presence of N,N-dimethylimidazole as a polymerisation promoter.

Fig.5 Cross-linked elastomer consisting of phenyl-PDMS copolymer in PDMS matrix and structures of the added phenyl-PDMS copolymers.

3. Results

Fig.6A: Analytical NMR spectra in the range (A) -1.3 ppm for OD (yellow), T4 (purple), OD4-NH3 (blue), OD4-V3 (blue) and PDT_75,25 (red). B: Partial 1H NMR spectra of PD, PDT, PDS copolymers and the related multiblock copolymer 126DMS_2PMS prepared by step-growth polymerisation as reported earlier[12]. C: Partial NOESY spectrum of PDT, 5020 showing through space correlations between aromatic protons and methyl protons.

Fig.7 3D AFM pictures of elastomers with varying loadings of copolymer PDT_75,25.

Fig.8 Dielectric properties of elastomers as a function of phenyl content for the investigated elastomers at room temperature. A: Dielectric permittivity at a frequency of 0.1 Hz. B: Dielectric loss at a frequency of 0.1 Hz. C: Electrical breakdown strength.

Fig.9 Mechanical properties of elastomers as a function of phenyl content at room temperature. A: Storage modulus measured at 2% strain and 0.01 Hz. B: Tensile strength measured at 2% strain and 0.01 Hz. C: Stress at break. D: Strain at break under tensile testing conditions. E: Tear strength. F: Strain at break under tear testing conditions. G: Young’s modulus at 5 % strain.

4. Conclusions

The developed elastomers were inherently extensible with enhanced tensile and tear strengths, due to phenyl-rich microphases acting as reinforcing domains. Furthermore, addition of phenyl-functional copolymers resulted in elastomers with increased relative permittivity and electrical breakdown strength compared to control elastomers while retaining a low dielectric loss. This demonstrates their efficiency as voltage stabilisers.

Table 1 Overall properties of the elastomers.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Composition</th>
<th>Theoretical phenyl concentration (mol %)</th>
<th>Gel fraction (%)</th>
<th>tanδ</th>
<th>Relative permittivity (εr)</th>
<th>Mechanical properties</th>
<th>Electric properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>V31</td>
<td>PDMS</td>
<td>0.00</td>
<td>0.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>V33</td>
<td>PDMS</td>
<td>0.25</td>
<td>0.50</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>V35</td>
<td>PDMS</td>
<td>0.50</td>
<td>0.75</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>V37</td>
<td>PDMS</td>
<td>0.75</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>V39</td>
<td>PDMS</td>
<td>1.00</td>
<td>1.25</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Acknowledgments

The authors gratefully acknowledge the financial support of the Independent Research Fund Denmark.

References