Insight into the Dielectric Breakdown of Elastomers

Vaicekauskaite, Justina; Mazurek, Piotr Stanislaw; Yu, Liyun; Skov, Anne Ladegaard

Publication date:
2018

Document Version
Peer reviewed version

Citation (APA):
Nowadays, dielectric elastomers are used in many different fields, such as: dielectric or transport layers, modern devices or flexible electronics [1]. To test dielectric elastomer stability in electric field, dielectric breakdown measurements are used. These measurements have been used over many years and still gaining on importance, however, fundamentals behind the electrical breakdown of thin and elastic films are still not fully understood and elucidated.

There are only few theoretical models that assess the physical processes occurring during a breakdown phenomenon, for example: the hole-induced breakdown model, the electron-trapping breakdown model, the resonant-tunneling-induced breakdown model and the filamentary model [2]. In all these theories, electrons movements from electrode to polymer film samples are considered. Other theory is the, so-called, electro-mechanical model, which implies that polymer films are not always smooth, and when an electric field is applied, the force gets bigger at the thinnest spot of the film, which causes the deformation of a film. Subsequently, when electric strength is reached at the thinnest spot - breakdown occurs [3]. This is also referred to electro-mechanical instability (EMI) and has been extensively studied by modelling [4]–[7].

In this work, microscopic processes taking place during the dielectric breakdown were captured using high-speed camera, to verify if the time-scale and behavior of the electrical breakdown can elucidate the underlying behavior.