Giant Two-Mode Non-linearity Using a Single Quantum Dot Embedded in a Photonic Wire.

Nguyen, H.A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.L.; Tumanov, D.; Fratini, F.; Malik, N.S.; Dupuy, E.; Gregersen, Niels; Auffeves, A.; Gerard, J.M.; Claudon, J.; Poizat, J.P.

Publication date: 2018

Document Version Peer reviewed version

Giant Two-Mode Non-linearity Using a Single Quantum Dot Embedded in a Photonic Wire

H.A. Nguyen¹, T. Grange¹, B. Reznychenko¹, I. Yeo¹-², P.L. de Assis¹, D. Tumanov¹, F. Fratini¹, N.S. Malik², E. Dupuy², N. Gregersen³, A. Auffèves¹, J.M. Gérard², J. Claudon², J.P. Poizat¹

¹ Université Grenoble-Alpes, CNRS, Institut Néel, France
² Université Grenoble-Alpes, CEA, INAC-PHELIQS, France
³ Department of Photonics Engineering, DTU Fotonik, Kongens Lyngby, Denmark

Optical logic down to the single photon level holds the promise of data processing with a better energy efficiency than electronic devices. In addition, preservation of quantum coherence in such logical components would enable optical quantum logical gates. Optical logic requires optical two-modes non-linearities to allow for photon-photon interactions. Non-linearities usually appear for large intensities, but discrete transitions in a well-coupled single two-level system allow for giant non-linearities operating at the single photon level.

This is achieved by engineering what has been coined a “one-dimensional atom”, wherein a light emitter is predominantly coupled to a single propagating spatial mode. Here we take advantage of the large coupling efficiency and the broadband operation of a photonic wire containing a semiconductor quantum dot (QD) to implement a two-mode non-linearity using two different optical QD transitions. Our system is made of a single InAs QD embedded in a GaAs tapered photonic wire (fig. 1a). This system, in which the QD is efficiently coupled to a single guided mode, has been exploited to realize ultrabright single-photon sources [1]. We exploit here its broad operation bandwidth (>100 nm around 950 nm) to efficiently address two different transitions of the QD with two different laser beams to implement a two-color giant non-linearity: a weak probe laser has its reflectivity controlled by a few photons of the control laser [2].

Fig. 1. a, A single InAs QD embedded in a GaAs waveguide. The three-level system is made of the excitonic (X) and the biexcitonic (XX) transitions. The β parameter is the fraction of light emitted by the QD that is guided by the waveguide. b, The probe (upper transition) reflectivity is displayed as a function of the control (lower transition) power for a probe power of 0.5 nW (solid squares) and 2.6 nW (empty circles).

References