Programmable optical waveform reshaping on a picosecond timescale

Manurkar, Paritosh; Jain, Nitin; Kumar Periyannan Rajeswari, Prem; Kanter, Gregory S.

Published in:
Optics Letters

Link to article, DOI:
10.1364/OL.42.000951

Publication date:
2017

Document Version
Peer reviewed version

Citation (APA):
Programmable optical waveform reshaping on a picosecond timescale

Paritosh Manurkar1,2,*, Nitin Jain1,3, Prem Kumar1,4, and Gregory S. Kanter1

1 Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA
2 Now at National Institute of Standards and Technology, Boulder, CO 80305, USA
3 Now at Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
4 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
* Corresponding author: paritoshmanurkar2013@u.northwestern.edu

Compiled February 7, 2017

We experimentally demonstrate temporal reshaping of optical waveforms in the telecom wavelength band using the principle of quantum frequency conversion. The reshaped optical pulses do not undergo any wavelength translation. The interaction takes place in a nonlinear $\chi^{(2)}$ waveguide using an appropriately designed pump pulse programmed via an optical waveform generator. We show reshaping of a single-peak pulse into a double-peak pulse and vice versa. We also show that exponentially decaying pulses can be reshaped into near Gaussian shape, and vice versa, which is a useful functionality for quantum communications. © 2017 Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (320.5540) Pulse shaping; (270.5565) Quantum communications.

http://dx.doi.org/10.1364/OL.XX.XXXXXX

All-optical signal processing enables applications such as optical signal regeneration [1] which becomes especially useful in high-speed communication systems where reshaping of distorted or noisy pulses is necessary. Quantum information processing [2,3] can also benefit from optical signal reshaping. Signals at the single-photon level have been reshaped using nonlinear process of sum-frequency generation [4, 5], four-wave mixing [6] and cross-phase modulation [7]. A typical example where optical reshaping is required is the interfacing of quantum emitters to the existing fiber infrastructure, as illustrated in Fig. 1. The emitters typically have a decaying-exponential output which needs to be compressed and reshaped into simpler pulse shapes [4, 5, 8–10] including Gaussian pulses [11]. Another example of optical reshaping is the generation of parabolic pulses from Gaussian pulses [12, 13]. Many of the reshaping techniques are based on quantum frequency conversion (QFC) [14] where the input frequency of a quantum signal is translated to a different output frequency while preserving the quantum features of the input state. If QFC is realized as a sum-frequency generation (SFG) process in a $\chi^{(2)}$ waveguide, the sum-frequency (SF) conversion efficiency is dependent on the pump power and varies as $\eta_{\text{SF}} = \sin^2(\chi_{\text{eff}} \sqrt{P} L)$ assuming CW conditions and undepleted pump. Here χ_{eff} is a term proportional to the effective nonlinear coefficient of the medium, P is the incident pump power, and L is the length of the nonlinear medium [15, 16]. The sine-squared relationship implies that as the pump power is increased, η_{SF} reaches a maximum that can ideally become unity. However, as the pump power is increased beyond the power for maximum conversion, one reaches a stage where all the SF light is converted back to the original signal wavelength.

In this Letter, we employ this over-conversion principle to experimentally demonstrate programmable reshaping of optical pulses without altering their wavelength. The reshaping mechanism is actuated through tailoring of the pump pulses [17, 18]. The signal and pump pulse trains at the input of the waveguide are centered at wavelengths $\lambda_{\text{sig}} = 1532.1$ nm and $\lambda_{\text{pump}} = 1556.6$ nm, respectively. The pump power is set so that its nonlinear interaction with the signal leads to almost all of the converted SF light (center wavelength $\lambda_{\text{sum}} = 772.1$ nm) inside the waveguide to convert back to λ_{sig} at the waveguide output.

The tailored pump waveforms at the input are obtained using the process of optical arbitrary waveform generation (OAWG) [19, 20] via independently controlling the phase and amplitude of each tooth of an optical frequency comb (OFC). We also employ OAWG to produce three different input signal waveforms S_1, S_2 and S_3, and the reshaping is demonstrated by the conversions $S_1 \rightarrow S_2$ and $S_1 \rightarrow S_3$, along with the in-
verses $S_2 \rightarrow S_1$ and $S_e \rightarrow S_1$. Here, signals S_1 and S_2 mimic the orthogonal temporal modes generated in a spontaneous parametric down conversion (SPDC) process, and are determined via a numerical simulation detailed in Ref. [18]. We note that S_1 is a nearly Gaussian pulse shape while S_2 is a double-peak pulse shape. The third signal waveform, S_e, is an exponentially decaying pulse. In theory, this waveform has an infinite slope before the exponential decay. To cater to the experiment, the simulated S_e pulse shape linearly increases from zero to the peak value (rise time ≈ 5 ps), followed by the exponential decay with a time constant $\tau = 5$ ps. In our previous works [18, 21, 22], we theoretically designed the desired pump pulse profiles by employing a genetic algorithm, where the pump-signal interaction was modeled either using Green’s functions or by solving the propagation equations numerically using a split-step method. The genetic algorithm applied n parallel perturbations on a single pump comb line in both intensity and phase, thereby producing n different pump waveforms. The pump waveform which maximally satisfied some criteria of interest (e.g., conversion efficiency or selectivity [23, 24]) was selected and the process was re-iterated. In the work reported here, we employed the simultaneous perturbation stochastic approximation (SPSA) method [25] to apply perturbations simultaneously on all 17 comb lines producing a new pump waveform in each iteration. The SPSA method for obtaining the desired pump was better than the genetic algorithm since we could perturb all comb lines simultaneously, thereby reducing the processing times and CPU usage because no parallel processing was required. The perturbed pump was either kept or discarded based on the selection criteria used in the program. We employed the visibility (η) of interference between the reshaped and the target pulse as the optimizing parameter.

To elaborate, the interference visibility between the target signal (S_j with $j = 1$, 2, or e) and the reshaped signal (\tilde{S}_j) was calculated and used as the optimization metric. Note that to differentiate between the directly shaped signals and the reshaped signals (since both may be used as output signals for further measurements), we denote the latter with a \sim sign on top of the signal name. The SPSA algorithm was continued as long as the maximum visibility V_{max} (maximized as a function of delay between the two interfering modes) increased with the number of iterations. When V_{max} approached 0.99 (0.97 in case of $S_1 \rightarrow \tilde{S}_e$), the optimization of the pump profile for the specified interaction was deemed complete. In each case, a mode-matching efficiency $\eta_{\text{MM}} > 99\%$ was calculated using an overlap integral definition.

Figure 2 shows the simulation results for reshaping of the input signals. In these plots, we manually set the phase to zero wherever the amplitude was $< 5\%$ of the peak amplitude to squelch the random fluctuations and artifacts in phase that arise from MATLAB computations. In order to quantify the improvement after reshaping, we calculated V and η_{MM} between S_1-S_2 and S_1-S_e. Since S_1 and S_2 are orthogonal to each other, $V = 0$ and $\eta_{\text{MM}} = 0$. However, we calculated for S_1-S_e, $V = 0.63$ and $\eta_{\text{MM}} = 40\%$. It is clear from the V_{max} and η_{MM} values quoted in the previous paragraph that reshaping $S_1 \rightarrow \tilde{S}_2, S_2 \rightarrow S_1, S_1 \rightarrow \tilde{S}_e$ and $S_e \rightarrow S_1$ made the reshaped signals significantly closer to their target waveforms.

In the experiment, we produced two separate OFCs with 17 comb lines at a spacing of 20 GHz for the signal and pump. The schematic is shown in Fig. 3. The comb source was based on RF-driven cascaded configuration of phase and amplitude modulators [26]. For OAWG, we employed commercial pulse shaping devices (Finisar 1000S and 4000S, labeled WS-A and WS-B, respectively, in Fig. 3) to produce the signals S_1, S_2, and S_e and their respective pump pulses for the SFG interaction in a periodically-poled lithium niobate (PPLN) waveguide [27].

Since the pulses produced using modulator-based pulse shaping techniques are inherently chirped, it became imperative to take the chirp into account for reliable shaping of the combs. We employed a method derived from Ref. [28], based on selecting adjacent pairs of comb lines and detecting the produced beat signal using a fast detector. Each selected pair resulted in time shifts which were subsequently corrected by applying corresponding phase shifts using WS-A. Ref. [22] gives more details on this phase correction method.

We employed an Er-doped fiber amplifier to amplify the peak power of the pump pulse train, and a programmable optical delay line (PODL-A) in the signal path to temporally overlap the pump and signal pulse trains inside the waveguide. The pump power entering the waveguide could be controlled in order to tune the η_{SF}. The output of the waveguide was filtered and connected to a 500-GHz optical sampling oscilloscope (OSO) to observe the intensity profiles of the signals in the pump OFF (original signal) and pump ON (reshaped signal) cases.

Using PODL-B, we also measured the interferometric visibility as a function of delay between the reshaped signal (lower arm) with a directly shaped reference signal (upper arm) prepared using WS-B. For example, in the $S_1 \rightarrow \tilde{S}_2$ measurement, we shaped S_1, shown by the solid-red trace in Fig. 4(a), along with the corresponding pump for the conversion using WS-A. With S_1 also shaped using WS-B, the interference visibility (S_1-S_1) as a function of delay is illustrated in Fig. 4(c). Note that in the visibility terms S_j-S_k or \tilde{S}_j-S_k, the second signal S_k is always the one shaped in the reference arm of the setup while S_j [\tilde{S}_j] is the signal obtained at the output of the waveguide with pump off [on]. The square root of OSO-measured intensity profiles of the reshaped signal S_2 is shown by the dashed-blue trace in Fig. 4(a), and Fig. 4(c) illustrates the interference visibility S_2-S_1 as a function of delay. Similar results from the inverse case $S_2 \rightarrow S_1$ are depicted in Fig. 4(b) and Fig. 4(d). From these
Published by

1532.1 nm

1556.6 nm

pump

signal

Visibility

50/50

signal

sum (SF)

(c) and (d) show the visibilities of the original (solid trace) and (b), respectively. For these experiments, we performed similar interferometric measurements as before, however, since S_1 and S_2 are not orthogonal signals, we only measured S_1-S_1 and $S_\epsilon-S_\epsilon$ visibility curves, shown in Fig. 5(c) and 5(d), respectively. For example, in the $S_\epsilon \rightarrow S_1$ conversion, we first shaped S_1 using WS-A and measured the S_1-S_1 visibility curve for calibration purposes. Then we shaped S_ϵ using WS-A and with the pump on, again measured S_1-S_1 visibility. In both S_1-S_1 and S_1-S_1 visibility measurements, the measured maximum values are approximately the same. Table 1 lists the maxima of the visibilities observed upon interfering the outcomes of the $S_1 \rightarrow S_\epsilon$ and $S_\epsilon \rightarrow S_1$ conversions, with reference signals S_ϵ and S_1, respectively.

With E_r and E_o denoting the energies of thereshaped signal and the original signal, respectively, we can define a reshaping conversion efficiency, η_r, measured at the output of the waveguide as

$$\eta_r = \frac{E_r}{E_o}. \quad (1)$$

These energies are calculated as the area under the pulse after background subtraction, using the waveform traces obtained via the OSO. We find an $S_1 \rightarrow S_2$ reshaping efficiency of $\eta_r = 89.6\%$ while $S_2 \rightarrow S_1$ yielded $\eta_r = 61.6\%$. We varied the pump power results, it is clear that we can indeed retrieve a double-peak feature from S_1 and a single-peak feature from S_2. Also, from the interference visibilities, listed in Table 1, it is evident that the reshaped signals become nearly orthogonal to the original signal, as desired.

Similar amplitude profiles were observed in the $S_\epsilon \rightarrow S_1$ and $S_1 \rightarrow S_\epsilon$ reshaping measurements are depicted in Fig. 5(a) and 5(b), respectively. For these experiments, we performed similar interferometric measurements as before, however, since S_1 and S_ϵ are not orthogonal signals, we only measured S_1-S_1 and $S_\epsilon-S_\epsilon$ visibility curves, shown in Fig. 5(c) and 5(d), respectively. For example, in the $S_\epsilon \rightarrow S_1$ conversion, we first shaped S_1 using WS-A and measured the S_1-S_1 visibility curve for calibration purposes. Then we shaped S_ϵ using WS-A and with the pump on, again measured S_1-S_1 visibility. In both S_1-S_1 and S_1-S_1 visibility measurements, the measured maximum values are approximately the same. Table 1 lists the maxima of the visibilities observed upon interfering the outcomes of the $S_1 \rightarrow S_\epsilon$ and $S_\epsilon \rightarrow S_1$ conversions, with reference signals S_ϵ and S_1, respectively.

With E_r and E_o denoting the energies of the reshaped signal and the original signal, respectively, we can define a reshaping conversion efficiency, η_r, measured at the output of the waveguide as

$$\eta_r = \frac{E_r}{E_o}. \quad (1)$$

These energies are calculated as the area under the pulse after background subtraction, using the waveform traces obtained via the OSO. We find an $S_1 \rightarrow S_2$ reshaping efficiency of $\eta_r = 89.6\%$ while $S_2 \rightarrow S_1$ yielded $\eta_r = 61.6\%$. We varied the pump power
and the delay using PDL-L A to obtain traces which gave us these \(\eta_r \) values. The conversion efficiencies in the second part of the experiment with the decaying-exponential pulse were measured to be 71% for \(S_1 \rightarrow S_\epsilon \) and 84.5% for \(S_\epsilon \rightarrow S_1 \).

We can obtain better \(\eta_r \) values for the four cases demonstrated in this experimental work by performing real-time pump profile optimization, potentially both in amplitude and phase. As demonstrated in Ref. [22], just the pump phase optimization using the SPSA algorithm was enough to significantly increase the conversion efficiency and separability values in the mode separability experiments. Likewise, we should be able to increase \(\eta_r \) in the work presented here. However, real-time amplitude and phase optimization for 17 comb lines implies that the SPSA algorithm needs to operate in a 34-variable space, which would be quite resource-intensive and render the optimization slow—possibly ineffective against drifts and noise in the setup. Also, assuming that the real-time optimization does not always converge on a global maxima, we would need to vary the pump power and the delay between pump and signal for each optimized pump profile to obtain the maximum possible \(\eta_r \). On the other hand, if we do successfully converge on a global maxima, we would still need to perform the aforementioned pump power and delay measurements to establish that it is indeed a global maxima. Thus, a thorough study is needed to find how to increase the \(\eta_r \) values compared to those presented in the current demonstration. With a digital control of the delay line, automation of the variation of pump power, and measurement of OSA traces, one should be able to conduct such a study.

To conclude, our experimental results show that we can reshape a given input optical signal into a desired waveform using the principle of quantum frequency conversion in a nonlinear waveguide. Such capabilities can be used in communication systems to clean incoming noisy or distorted signals. They also have potential for quantum communication systems where one may need to reshape decaying-exponential pulses into simpler single-peak pulses. Our method allows for the input waveforms to be converted into output waveforms by reprogramming the OAWG process to tailor the pump pulses appropriately. In contrast to direct mode reshaping technologies such as spatial-light-modulator based pulse shapers, our method does not require insertion of any lossy elements into the signal path, and thus can be nearly lossless in principle, a feature of utmost importance for quantum communication systems.

This work was partially funded by DARPA Quiness program (Grant # W31P4Q-13-1-0004). It should be noted that although Prem Kumar managed the Quiness program in his capacity as a DARPA Program Manager, the Northwestern effort was delegated to another Program Manager to avoid conflict-of-interest issues.

REFERENCES

FULL REFERENCES

