CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9

Jakociunas, Tadas; Pedersen, Lasse Ebdrup; Lis, Alicia Viktoria; Jensen, Michael Krogh; Keasling, Jay

Published in:
Metabolic Engineering

Link to article, DOI:
10.1016/j.ymben.2018.07.001

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9

Tadas Jakociunas¹, Lasse E. Pedersen¹, Alicia V. Lis¹, Michael K. Jensen¹,⁎, Jay D. Keasling¹,²,³,⁴,⁵

¹ The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
² Joint BioEnergy Institute, Emeryville, CA, USA
³ Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
⁴ Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
⁵ Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China

A B S T R A C T

Here we describe a method for robust directed evolution using mutagenesis of large sequence spaces in their genomic contexts. The method employs error-prone PCR and Cas9-mediated genome integration of mutant libraries of large-sized donor variants into single or multiple genomic sites with efficiencies reaching 98–99%. From sequencing of genome integrants, we determined that the mutation frequency along the donor fragments is maintained evenly and successfully integrated into the genomic target loci, indicating that there is no bias of mutational load towards the proximity of the double strand break. To validate the applicability of the method for directed evolution of metabolic gene products we engineered two essential enzymes in the mevalonate pathway of Saccharomyces cerevisiae with selected variants supporting up to 11-fold higher production of isoprenoids. Taken together, our method extends on existing CRISPR technologies by facilitating efficient mutagenesis of hundreds of nucleotides in cognate genomic contexts.

1. Introduction

Directed evolution is a powerful approach and has been extensively used for functional analysis and optimization of DNA sequences, gene functions and protein structures (Buller et al., 2015; Jeschek et al., 2016). In order to employ directed evolution, both the strategy for creating mutant libraries, as well as the assays for screening and selection of improved variants in high throughput, need to be considered (DeLoache et al., 2015; Körfer et al., 2016; Wong et al., 2004). Nowadays, methods for generation of sequence-variant libraries often include custom-designed DNA oligo library pools, multiplexed oligo assembly, or more or less randomized mutagenesis of template DNA fragments (Mutalik et al., 2013; Plesa et al., 2018; Yang et al., 2017). Screening and selection assays based on conditional growth, genetically-encoded biosensors, and reporter gene activities, has recently been applied to complement the efficiency of library generation (Lee et al., 2013; Mundhada et al., 2016; Raman et al., 2014; Skjoedt et al., 2016). Irrespective of the origin of input library and the screening assays applied, when aiming to infer functional consequences of regulatory or genic DNA variants, it is important to acknowledge the impact of gene dosage and the genomic context of the gene encoding the protein of interest, as both overexpression and epigenetic regulation can impact downstream regulation arising from genetic variants when expressed from non-native plasmid-based cassettes or when using heterologous promoters (Gibson et al., 2013). For this reason, targeted genome integration of diversified templates should be the preferred tactic for directed evolution. However, in order to harness the power of directed evolution in defined genomic contexts it is important to evaluate the capacity for living cells to take up and genomically integrate large, heterologous DNA fragments.

Pioneering studies on integration of linear fragments with homologous ends to chromosome integration sites was performed in yeast more than three decades ago (Orr-Weaver et al., 1981; Resnick and Martin, 1976; Szostak et al., 1983). Since then, the use of inducible endonucleases targeting defined genomic loci has further developed and improved both HR-based in vivo assembly of DNA fragments and methods for genome integration of heterologous DNA in both yeast and mammalian cells (Kuijpers et al., 2013; Rouet et al., 1994; Storici et al., 2001; Storici and Resnick, 2003). As such, the use of endonucleases has been reported to increase integration efficiencies by several orders of magnitude (Storici and Resnick, 2003). More recently, the use of the type II CRISPR/Cas9 system from Streptococcus pyogenes has gained broad adoption for RNA-guided gene editing and genome engineering in a wide range of organisms (Cong et al., 2013; DiCarlo et al., 2013; Jakociunas et al., 2017, 2016; Li et al., 2015). Cas9 is an RNA-guided endonuclease that introduces double-stranded breaks (DSBs) at almost any target DNA locus where a protospacer-adjacent motif (PAM; NGG) is present, yielding several hundred thousand genomic target sites in an
average eukaryotic genome (DiCarlo et al., 2013). With the ability to target and integrate heterologous DNA fragments at high efficiencies by way of homologous recombination, several studies have investigated directed evolution and sequence-function relationships of regulatory and genomic regions in genomic contexts, albeit using short oligonucleotides as repair donors (Barbieri et al., 2017; Findlay et al., 2014; Garst et al., 2017; Storici et al., 2001; Wang et al., 2009). In addition, larger mutagenized DNA fragments were in vivo assembled and integrated into the \textit{S. cerevisiae} genome by employing Cas9 and a selection marker (Ryan et al., 2014).

Here we employ CRISPR/Cas9 for introduction of DSB at genomic targets and native homology-directed repair to integrate mutagenised 300–600 bp linear DNA donors to demonstrate a simple, yet efficient, method for directed evolution of enzymes in native genomic contexts. We show that the method works for targeting single and double genomic loci with equal efficiency, and also show that even mutation distribution along the engineered fragment is maintained for the genomic integrants. Finally, we apply the method for directed evolution of two key metabolic enzymes in the mevalonate pathway of \textit{S. cerevisiae}, thereby improving isoprenoid production by 11-fold. The method is called CasPER, short for Cas9-mediated protein evolution reaction.

2. Materials and methods

2.1. Strains, plasmids and media

The yeast strains used here were isogenic to CEN.PK2-1C. Strains and plasmids are listed in \textit{Supplementary Tables S1 and S2}, respectively. Yeast cells were grown in complete medium (YPD) with 2% glucose and synthetic complete (SC) from Sigma, supplemented with 2% glucose. \textit{E. coli} strains were propagated in LB medium supplemented with 200 mg of ampicillin.

All primer names and sequences are listed in \textit{Supplementary Table S3}.

2.2. Selection of gRNAs and plasmid construction

To select for specific gRNAs targeting \textit{BTS1}, \textit{HMG2}, \textit{ERG12} and \textit{ERG20} we used the online CRISPy-web tool (Ronda et al., 2014). Selected gRNA sequences corresponded as follows: \textit{BTS1} – TAGCTGGCA TACAAGTGGCA; \textit{HMG2} – TGTCATGACATCTTTCCGGA; \textit{ERG12} – GTT AATAGGATCATATTACT; \textit{ERG20} – CTATGAAAGGATGCTTTCTCTT. All gRNAs were expressed under SNR52 promoter and SUP4 terminator, and the expression cassettes were USER cloned into cloning vector pTAJAK-96 as previously described (Jakociunas et al., 2015a, 2015b). To construct the Cas9 expression plasmid, first centromeric pRS414 shuttle vector with the trypotphan selection marker (Sikorski and Hieter, 1989) was amplified with primers TJOS-167F and TJOS-167R to create \textit{USER} cloning-compatible ends. Second, Cas9 expression cassette (TEF1 promoter, Cas9 and CYCI terminator) was amplified from plasmid pID43802 (Addgene) using primers TJOS-168F and TJOS-168R containing \textit{USER} cloning compatible ends. Third, TEF1-Cas9-CYCI was USER cloned into previously prepared pRS414 shuttle vector labelled pTAJAK-162. To create yeast strain TC-146 expressing Cas9, pTAJAK-162 was transformed in to CEN.PK2-1C.

The carotenoid expressing strain was constructed as described previously (Ronda et al., 2015), herein labelled TC-100.

To reengineer the yeast strains with \textit{ERG12} and \textit{ERG20} mutant variants, first, \textit{ERG12–71} and \textit{ERG20–53} mutant variants were amplified with primers TJOS-127F and TJOS-127R; TJOS-126F and TJOS-126R respectively. Second, strain TC-164 was transformed either with a single gRNA expression plasmid (targeting \textit{ERG12}: pTAJAK-118 or \textit{ERG20}: pTAJAK-113) or with double gRNA expression plasmid (\textit{ERG12} + \textit{ERG20}: pTAJAK-187) and previously amplified \textit{ERG12–71} - \textit{ERG20–53} mutant variants, which served as donor templates for integration through homologous recombination and replacement of original \textit{ERG12} or \textit{ERG20} or both. Newly constructed strains (TC-150: \textit{ERG12–ERG20–71}; TC-151: \textit{ERG20–ERG20–53}; TC-152: \textit{ERG12–ERG12–71, ERG20–ERG20–53}) were used further to integrate carotenoid genes and measure carotenoid production.

2.3. Mutagenesis and library preparation

First, templates for the error-prone PCR (epPCR) of the gRNA (used to target the original \textit{ERG12} and \textit{HMG2}) were pooled and purified by ethanol precipitation adding 3 volumes of 99% ethanol and 1/10 vol of 3 M sodium acetate. As for \textit{ERG12} and \textit{ERG20}, after each round of epPCR, the resulting DNA was purified by Nucleospin PCR cleanup kit (Macherey-Nagel). Further, the DNA was treated with USER enzyme (New England Biolabs) according to the manufacturer’s instructions. Three USER treatment reactions were performed with each purified epPCR reaction and transformed into \textit{E. coli} competent cells together with pTAJAK-71 (Jessop-Fabre et al., 2016) previously digested with AsiSI (Thermo Fisher) and NheI (New England Biolabs) to create mutagenesis libraries. \textit{E. coli} transformants were plated on LB supplemented with ampicillin and grown over night at 37 °C. Bacterial colonies were washed from the plates and grown for plasmid extraction. Plasmids were extracted by using Maxi prep kit (Qiagen).

2.4. Genome integration of mutagenized fragments

To integrate mutagenized fragments into the genome, yeast strain TC-100 or TC-3 harbouring Cas9 expression vector was used. Transformation with electroporation method (Wu and Letchworth, 2004) was performed with the following amounts of DNA:

- 5 picomoles of purified mutagenized fragments from each of the five epPCR’s (25 picomoles in total), for multiplex targeting 25 picomoles of equally mixed \textit{BTS1} mutagenized fragments and 25 picomoles of equally mixed \textit{HMG2} mutagenized fragments (50 picomoles in total); for \textit{ERG12} and \textit{ERG20} engineering, each mutagenesis library was digested with each PvuII and fragments were gel purified (25 picomoles in total for each \textit{ERG12 and ERG20} were used); 10 µg of single or double gRNA expression vector was used.

Mixed DNA needed for transformation was ethanol precipitated and resuspended in 5 µL of water. BioRad MicroPulser electroporator with settings for \textit{Fungi} was used.

After transformation, cells were plated on SC (Sigma) plates or propagated in liquid media by selecting for Cas9 and gRNA expression vectors. Cells were propagated at 30 °C for 2–4 days.

2.5. Transformation efficiency quantification

Transformation efficiencies were quantified by plating dilution series on selective media and calculation the number of colonies (\textit{Supplementary Fig. S1}).
2.6. Sequencing and analysis

To characterize the method, both BTS1 and HMG2 mutagenized fragment libraries and genome integrants were sequenced. After propagation of yeast transformants in liquid media, the DNA from whole cultures was extracted using ZR Fungal/Bacterial DNA miniprep kit (Zymo Research). Both mutagenized fragments and genomic DNA were used to generate amplicons of BTS1 and HMG2 as described by Lee and colleagues (Lee et al., 2015) with the following primers: TJOS-339F and TJOS-339R; TJOS-340F and TJOS-340R respectively. Amplicons were sequenced by Illumina MiSeq using Nextera DNA library prep kit (Illumina).

Initially raw fastq files where processed using the r package DADA2 to infer exact amplicon variants and their abundance (Callahan et al., 2016). All additional analysis was performed in Jupyter-lab sing python 3.6.5 (Python Software Foundation, https://www.python.org/) and BioPython (Cock et al., 2009), Pandas (McKinney et al., 2010), Matplotlib (Hunter, 2007), numpy (Oliphant, 2015), mpmath (Johansson, 2013) and Scipy (Jones et al., 2001).

The analysis notebook and all raw data is available at https://data.mendeley.com/datasets/wkd5wp9zwk/1.

In brief the analysis consists of the following: identify type and number of mutants in detected variants compared to wild type and visualize data in a number of ways. Count mutants per position and visualize. Count specific mutation per position and visualize.

Count integration rate.

To evaluate if there is a mutation frequency bias around the PAM site we did the following: Fit a negative binomial (nb) to a histogram representation of the mutation frequency per position along the amplicon. Then use the nb model to calculate how often you would see a mutation frequency equal to, or higher, than the frequency observed in the pam site (median of 5 bp window).

Furthermore, selected transformants from BTS1, HMG2, ERG12 and ERG20 targets were Sanger sequenced with the following primers: TJOS-15F and TJOS-15R (BTS1); TJOS-371F and TJOS-371R (HMG2); TJOS-127F and TJOS-127R (ERG12); TJOS-126F and TJOS-126R (ERG20).

2.7. Carotenoid extraction and quantification

Five mL cultures were inoculated and grown at 30 °C for 72 h and an equal amount of each culture (based on OD) was taken for further analysis. Cells were collected by centrifugation and cell walls broken using 0.5 mm glass beads (Sigma) and Precellys 24 homogenizer (Bertin Instruments). Intracellular carotenoids were extracted with hexane.

In the pre-screen, carotenoid measurements were performed by measuring the absorption at 449 nm with Implen spectrophotometer (Implen). A standard curve was determined by measuring known concentrations of β-carotene and the following formula was used to quantify carotenoids in the extracts (Verwaal et al., 2007):

\[
\text{Concentration of carotenoids} = 25,509 \times A_{449\text{nm}} - 0,5809.
\]

For selected mutants, carotenoids (β-carotene and lycopene) were quantified by HPLC. Diluted culture supernatants were held in the autosampler at a temperature of 5 °C prior to analysis. The sample volume injected was 10 μL and the separation was performed using a Supelco Discovery HS F5-3 column (Sigma Aldrich), with a particle size of 3 μm, i.d. of 2.1 mm and a length of 15 cm. The column oven temperature was set to 30 °C. Gradient elution was performed at a constant flow rate of 0.7 mL/min using water with formic acid (1%) (eluent A) and acetonitrile (eluent B). The following gradient was applied: The initial isocratic step with 25% eluent B (2 min) was followed by an increase to 90% within 2 min and kept for another 6.5 min. The column was turned to initial conditions by decreasing eluent B for approx. 1 min to 25% and remained at this value for another 2 min. UV detection at 450 nm was applied for the quantification of β-carotene and lycopene.

2.8. The methodological workflow

CasPER can be divided into the following major steps (Fig. 1). First, a decision is made which DNA fragment is to be mutated. In our test case we initially mutagenized fragments of 300-bp and 600-bp. Second, a suitable gRNA is designed for the genomic target site(s) of interest by the use of CRISPy (Jakočiūnas et al., 2015a), or similar gRNA design tools, and a plasmid carrying gRNA expression cassette(s) for the chosen PAM(s) is constructed. Third, 300-bp and/or 600-bp PAM-deficient DNA templates for mutagenesis are synthesized or amplified from the host genome and processed through multiple rounds of error-prone PCR (epPCR). The number of PCR rounds applied is reflected in the number of mutations in the DNA fragment of interest (Cherry et al., 1999). The epPCR is performed with primers containing 52-bp overhangs homologous to the genomic loci upstream and downstream of the Cas9-mediated double-strand break (DSB). Overhangs may also include a restriction site or a motif for cloning and generation of plasmid-based mutagenesis library useful for propagation in E. coli and further use. Fourth, mutagenized linear fragments together with the plasmid carrying the gRNA expression cassette are co-transformed by electroporation into the organism of interest.
3. Results

3.1. Characterization of CasPER for mutagenesis of genomic loci

As a proof-of-principle we applied the method in the yeast *S. cerevisiae* in order to engineer a 300-bp catalytic domain of the non-essential gene encoding geranylgeranyl diphosphate synthase (*BTS1*; Fig. 2A) and a 600-bp region of non-essential gene encoding HMG-CoA reductase (*HMG2*; Fig. 2B). To characterize the size and sequence composition of integrated epPCR-derived donor fragments, we sequenced genomic amplicons from approximately 2000 colonies by next-generation sequencing (NGS). This number of colonies was targeted to get enough reads per colony-amplicon to overcome well-known NGS error rates (Huang et al., 2012; Manley et al., 2016; Raymond et al., 2017; Schirmer et al., 2015). The generated NGS data was analysed to characterize the mutation landscapes of the genomic target loci and to estimate the number of genome integrants at *BTS1* and *HMG2* genomic loci compared to the mutation landscapes arising without the use of Cas9-mediated DNA double-strand break (i.e. no gRNAs introduced).

First, since DNA double-strand breaks in yeast are primarily repaired by homologous recombination, the degree of sequence homology at the termini of linear donor fragments is known to affect the frequency of insertional repair (Haviv-Chesner et al., 2007). To evaluate if the method would support integration of linear fragments mutagenized along the full length of the donor fragments, we mapped all sequenced mutations across the 300-bp and 600-bp region and calculated the frequency at which mutations occurred in a given position (Fig. 2C-D; Supplementary Fig. S2). From this analysis, we observed that mutations distribute evenly across both the 300-bp and 600-bp regions with no overall bias towards higher mutation frequencies in proximity to the DSB site (Fig. 2D-C; Supplementary Fig. S3). This is an important observation when designing the genomic region to be targeted (e.g. evolution of larger catalytic domains of enzymes).

Furthermore, sequencing revealed that, following standard transformation procedure of *S. cerevisiae*, 98–99% Cas9-mediated integration efficiency was observed for both *BTS1* and *HMG2* (i.e. all sequenced colonies had at least one mutation integrated into the genomic site) (Supplementary Table S4). Sequenced variants had up to twenty eight
mutations when targeting BTS1 and up to twenty one mutations when targeting HMG2, with a peak of one mutation per both 300-bp long fragment and 600-bp long fragment (Fig. 2E-F). Further, as a control experiment for the DSB-induced genome engineering efficiency, we transformed the same amount of mutagenized fragments into yeast expressing Cas9, but without co-transforming the gRNA expression plasmid. Here, no mutagenized fragments were observed for BTS1 and HMG2, confirming that DSB caused by Cas9 is an essential feature of the method (Fig. 2E-F).

Next, to characterize the efficiency of CasPER, we estimated the total number of possible variants by calculating transformation efficiency when BTS1 and HMG2 are targeted. From this estimate we obtained almost 2,4 million transformants when targeting BTS1 and almost 1,6 million transformants when targeting HMG2 (Supplementary Fig. S1). Hence, since integration efficiency at both tested loci is 98–99% (Supplementary Table S4), the number of transformants obtained is believed to be a reasonable proxy for estimating the number of genomically integrated mutant fragments.

Biological systems are prone to genetic epistasis and synthetic lethality (Mackay, 2014; Phillips, 2008). In order to uncover such relationships and engineer genomes in higher throughput, genome engineering methods should preferably support directed evolution of more than one genomic locus per transformation. For this purpose, we tested whether CasPER can enable the integration of mutagenized linear fragments into two genomic loci in a single transformation. To test this, we designed an experiment in which BTS1 and HMG2 were targeted simultaneously using the same mutagenized 300-bp and 600-bp DNA fragments as in single targeting experiment described previously (Fig. 3A). As for the characterization of the single locus edits (Fig. 2C-F), we performed sequencing analysis to characterize the mutation frequency and the mutation landscapes of the two genomic target loci, when targeted in a single transformation. From this we observed that the integration efficiencies of mutagenized fragments were identical to the efficiencies observed for singleplex targeting, namely.
of essential genes in their genomic contexts, we targeted two enzymes of the mevalonate biosynthesis pathway. Control of metabolic flux through the mevalonate pathway is of paramount importance for prevention of various diseases (Akula et al., 2016; Frenkel et al., 2000), and for the development of biobased production of pharmaceuticals, food additives, fuels, cosmetics and others (Ye et al., 2016). In yeast, ERG12 encodes the mevalonate kinase, responsible for phosphorylation of mevalonate, whereas ERG20 encodes farnesyl pyrophosphate synthase, which catalyzes the formation of both farnesyl pyrophosphate (FPP) and geranyl pyrophosphate (GPP), units for sterol and isoprenoid biosynthesis (Chambon et al., 1991; Oulmouden and Karst, 1990). It has been shown that FPP and GPP can feedback inhibit binding of ATP to human mevalonate kinase, and hence limit the production through the pathway further (Ruff et al., 2014).

We applied CasPER to mutate the 300-bp kinase catalytic domain of ERG12, and the 600-bp catalytic domain of ERG20 (Fig. 4B, C). In order to efficiently screen and select enzyme variants supporting improved pathway flux, we introduced a metabolic sink downstream from the mevalonate and FPP pools, comprised of two heterologous carotenoid biosynthetic genes crtYB and crtI from yeast Xanthophyllomyces dendrorhous (Fig. 4A). When carotenoids are produced through this heterologous pathway, yeast transformants form yellow to orange colonies, depending on the amount of carotenoids produced (Gazdzyn et al., 2013; Verwaal et al., 2007). Hence, this pathway provides a facile visual screening platform to complement the high efficiency of CasPER.

Following transformation, approximately 60,000 colonies from each of the two library transformations were plated. Next, approximately 200 colonies displaying a darker orange phenotype than the wild-type reference strain were selected for further characterization (Fig. 4B, C). Following colony replication and repeated scoring of the phenotype, a pre-screen using spectrophotometric measurements of carotenoid extracts showed 1.5–3-fold higher carotenoid levels in 24 ERG12 and 11 ERG20 mutants (Supplementary Fig. S6). One of each of the ERG12 and ERG20 mutants displaying darker orange phenotypes were selected for further analyses. First, the selected mutants, ERG12–71 and ERG20–53, were re-introduced into a wild-type strain replacing the native ERG12 and ERG20 genes. Both single and double mutant strains were

98% for BTS1 and 99% for HM2G (Supplementary Table S4). As for the mutation landscape along the 5’–3’ end of single donor fragments, we again mapped all sequenced mutations across the 300-bp and 600-bp region when both loci were targeted simultaneously (Fig. 3B–C; Supplementary Fig. S4). Similar to our analysis of single genomic loci, the mutation landscapes across the 300-bp and 600-bp regions showed that mutations are evenly distributed without bias towards the DSB (Fig. 3B–C; Supplementary Fig. S5). Additionally, sequenced variants had up to twenty three mutations each when targeting both BTS1 and HM2G, with a peak of one mutation for both 300-bp long fragment and 600-bp long fragment (Fig. 3D–E).

To characterise the efficiency of CasPER in multiplex manner, we estimated the total number of possible variants by calculating transformation efficiency when BTS1 and HM2G is targeted simultaneously. We obtained over 1 million transformats (Supplementary Fig. S1) with integration efficiency of 98–99% (Supplementary Table S4), similarly to what was observed for single site engineering.

To summarize, these results show that CasPER allows for efficient integration of large donor fragments into both single and multiple genomic targets. Furthermore, the method is tolerant to genomic integration of donor fragments with multiple mutations without observed biases along the donor regions. In comparison to other existing genome engineering methods, CasPER is specifically useful when targeting larger genomic regions, without sacrificing engineering efficiency and cost.

3.2. Application of CasPER for engineering key enzymes in yeast mevalonate biosynthesis pathway

In order to investigate the potential of CasPER for directed evolution of essential genes in their genomic contexts, we targeted two enzymes in the mevalonate pathway, namely ERG12 and ERG20 (Fig. 4A). Control of metabolic flux through the mevalonate pathway is of paramount importance for prevention of various diseases (Akula et al., 2016; Frenkel et al., 2000), and for the development of biobased production of pharmaceuticals, food additives, fuels, cosmetics and others (Ye et al., 2016). In yeast, ERG12 encodes the mevalonate kinase, responsible for phosphorylation of mevalonate, whereas ERG20 encodes farnesyl pyrophosphate synthase, which catalyzes the formation of both farnesyl pyrophosphate (FPP) and geranyl pyrophosphate (GPP), units for sterol and isoprenoid biosynthesis (Chambon et al., 1991; Oulmouden and Karst, 1990). It has been shown that FPP and GPP can feedback inhibit binding of ATP to human mevalonate kinase, and hence limit the production through the pathway further (Ruff et al., 2014).

We applied CasPER to mutate the 300-bp kinase catalytic domain of ERG12, and the 600-bp catalytic domain of ERG20 (Fig. 4B, C). In order to efficiently screen and select enzyme variants supporting improved pathway flux, we introduced a metabolic sink downstream from the mevalonate and FPP pools, comprised of two heterologous carotenoid biosynthetic genes crtYB and crtI from yeast Xanthophyllomyces dendrorhous (Fig. 4A). When carotenoids are produced through this heterologous pathway, yeast transformants form yellow to orange colonies, depending on the amount of carotenoids produced (Gazdzyn et al., 2013; Verwaal et al., 2007). Hence, this pathway provides a facile visual screening platform to complement the high efficiency of CasPER.

Following transformation, approximately 60,000 colonies from each of the two library transformations were plated. Next, approximately 200 colonies displaying a darker orange phenotype than the wild-type reference strain were selected for further characterization (Fig. 4B, C). Following colony replication and repeated scoring of the phenotype, a pre-screen using spectrophotometric measurements of carotenoid extracts showed 1.5–3-fold higher carotenoid levels in 24 ERG12 and 11 ERG20 mutants (Supplementary Fig. S6). One of each of the ERG12 and ERG20 mutants displaying darker orange phenotypes were selected for further analyses. First, the selected mutants, ERG12–71 and ERG20–53, were re-introduced into a wild-type strain replacing the native ERG12 and ERG20 genes. Both single and double mutant strains were
constructed. Second, the carotenoid biosynthetic genes were introduced to the single and double mutant strains, and carotenoid production was quantified using HPLC. Carotenoid measurements showed an approx. 3-fold higher production with the ERG12–71 mutant and a 5-fold higher production with the ERG20–53 mutant, compared to the wild type reference strain expressing the carotenoid biosynthetic genes (Fig. 4D). In addition, the double ERG12–71/ERG20–53 mutant strain showed an 11-fold higher production of carotenoids when compared to a wild-type reference strain (Fig. 4D).

Taken together, the application of CasPER for directed evolution of ERG12 and ERG20 allows for simple and robust uncovering of improved enzyme variants supporting increased flux through the feedback regulated isoprenoid pathway.

3.3. Mutant analysis of yeast mevalonate kinase and farnesyl pyrophosphate synthase

To investigate the structural basis for increased carotenoid levels supported by the ERG12 and ERG20 mutated enzymes we compared them to homologs from other organisms and positioned the mutants onto structural models. First, the sequence analysis of ERG12–71 and ERG20–53 mutant strains showed a single amino acid change at position 186 from tryptophan to arginine for ERG12, and at position 95 from tyrosine to serine for ERG20 (Supplementary Fig. S7). Second, we aligned the primary structure of the ERG12 and ERG20 mutants with homologs from mammals, plants, and other yeasts (Fig. 5A, B). Alignments showed that tryptophan in position 186 of ERG12 is highly conserved throughout the kingdoms and can play a role in enzyme structure (Fig. 5A). On the other hand, tyrosine in position 95 of ERG20 is conserved through different species and mutant 53 with tyrosine mutated to serine (C) Predicted 3D protein structure of WT ERG12 and ERG12–71 is shown. Tryptophan position is depicted as well as ATP bound to WT ERG12 is shown in upper panel. Arginine position is depicted as well as ATP bound to ERG12–71 is shown in lower panel. (D) Predicted 3D protein structure of WT ERG20 and ERG20–53 is shown. Tyrosine position is depicted as well as GPP/FPP bound to WT ERG20 is shown in upper panel. Serine position is depicted as well as GPP/FPP bound to ERG20–53 is shown in lower panel.
conserved in several fungi and plant species, yet different from the mammalian homologs, although, in mammals the tyrosine is replaced with phenylalanine (Fig. 5B). Next, we analysed if the mutations in ERG12 and ERG20 are causing structural changes to the enzymes. Since the crystal structures for yeast ERG12 and ERG20 are not available, we used SWISS-MODEL (Arnold et al., 2006; Biasini et al., 2014; Guex et al., 2009; Kiefer et al., 2009) for the alignment of protein structures based on known crystal structures from other organisms (Fig. 5C, D). For the ERG12 structure alignment, the crystal structure of Gallus gallus FPP synthase was used as a template (1ubw.1.A) (Tarsisi et al., 1996). This resulted in 47.65% sequence identity (GMQE = 0.77). We modelled 3D structures, both for wild-type ERG12 and mutant ERG12–71 (Fig. 5C) as well as for wild-type ERG20 and ERG20–53 mutant (Fig. 5D). The mutations in ERG12 and ERG20 do not visually influence the aligned 3D structures of both enzymes. Further, it is worth mentioning that both mutations in ERG12 and ERG20 are in close proximity to the ATP binding pocket of the mevalonate kinase (Fig. 5C) and the GPP/FPP binding pocket of farnesyl pyrophosphate synthase (Fig. 5D).

Finally, although our analysis does not provide a clear evidence to how the mutations in ERG12 and ERG20 influence activity or structure of the enzymes, it shows that the amino acids which were mutated are conserved and are situated in close proximity to the ligand binding pocket.

4. Discussion

In the last five years CRISPR/Cas9 has been used for genome engineering and re-programming in yeast with efficiencies reaching 100% (DiCarlo et al., 2013; Jakočiūnas et al., 2015a; b; Jensen et al., 2017; Mans et al., 2015; Ryan et al., 2014) in both single and multiplex manner, hence these advancements have revolutionised the way yeast genomes are engineered today. Beyond the existing technologies, CasPER is an efficient method, which combines the generation of large mutated DNA fragments by epPCR (or any other method for generating sequence diversity) and multiplex genome integration of these fragments by native HR machinery following targeted CRISPR/Cas9-mediated DNA DSBs.

Indeed, CasPER has proven to be a very efficient method, reaching nearly 100% efficiency of integration of large mutagenised DNA fragments in multiplex manner, and thereby allowing the generation of millions of mutants from a single standard transformation. Importantly, no significant bias in mutation frequency was observed along integrated donor fragments in relation to DSB proximity, allowing efficient and non-selective mutagenesis of large DNA fragments. As such, beyond the proven efficiency of introducing donor variant libraries up to 600 bp without the use of selection markers, this study also provides an in-depth demonstration of the mutational landscapes and frequencies which can be obtained surrounding CRISPR/Cas9-mediated DSB target sites in HR-proficient organisms like S. cerevisiae.

Further, in our study we hypothesized that CasPER can support the integration of large donor variants encoding enzyme catalytic domains or even whole coding regions of enzymes and other DNA regulatory elements. To test this, we applied CasPER for directed evolution of catalytic domains of two essential enzymes in the mevalonate pathway. The experiment uncovered mutants that were able to improve carotenoid production by 11-fold, as a proxy for changed metabolic flux through yeast's native mevalonate pathway. Though this study did not further characterize the biochemical activity of the evolved ERG12 and ERG20 mutants, it is anticipated that these variants will be subject to numerous follow-up studies and applications related to microbial production of fuels and chemicals derived from the mevalonate pathway.

Finally, at present, most of the CRISPR/Cas9-based directed evolution methods rely on integration of relative small (80–120 bp) DNA fragments (Barbieri et al., 2017; Garst et al., 2017; Guo et al., 2018) and may require time-consuming construction of donor variant libraries and/or relative costly DNA synthesis of diversified array-based oligos (Nyerges et al., 2018; Roy et al., 2018). With CasPER, multiplex genome engineering of larger genomic loci is now demonstrated at very high efficiencies along the full size of donor fragment lengths, and should thereby enable cost-effective, high-throughput and robust evolution studies of even complex multi-genic traits in any organism supporting genome integration of heterologous DNA by homologous recombination.

Acknowledgements

The authors would like to acknowledge Dushica Arsov ska, Anna Koza, Alexandra Hoffmeyer and Pannipa Pornpitakpong for technical assistance in relation to NGS.

Funding

This work was funded by the Novo Nordisk Foundation.

Conflicts of interest

JDK has a financial interest in Amyris, Lygos, Demetrix, Constructive Biology, Maple Bio, and Napigen.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ymben.2018.07.001.

References

Findlay, G.M., Boyle, E.A., Hause, R.J., Klein, J.C., Shendure, J., 2014. Saturation editing