Communication—Perovskite Electrochemical System for Highly Selective NOx Reduction of Diesel Engine Exhaust

Shao, Jing; Cheng, Qilun; Liu, Ying; Zhang, Wenjing (Angela); Tao, Youkun; Kammer Hansen, Kent

Published in:
Journal of The Electrochemical Society

Link to article, DOI:
10.1149/2.0261810jes

Publication date:
2018

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A perovskite electrochemical system was developed for selective NOx reduction of diesel engine exhaust. The system was composed of a La0.9Sr0.1CoO3-δ oxidation catalyst and a (La0.85Sr0.15)0.95MnO3±δ/Ce0.9Gd0.1O1.95 electrochemical cell with BaO nanoparticles. A selectivity of 25–35% was achieved with a NOx conversion of 65–75% in 1000 ppm NO with 8% O2 at 375 °C. The superior performance of the system was suggested to be ascribed to the promotion in NO2 formation substantially activating the NOx trapping and reduction processes on the electrode.

© The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0261810jes]

Communication—Perovskite Electrochemical System for Highly Selective NOx Reduction of Diesel Engine Exhaust

Jing Shao,† Qilun Cheng, Ying Liu, Wenjing Zhang, Youkun Tao,†,* and Kent Kammer Hansen†

†College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People’s Republic of China
‡Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark
§Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, People’s Republic of China

Manuscript submitted February 28, 2018; revised manuscript received May 15, 2018. Published July 4, 2018.

Nitrogen oxides (NOx, NO + NO2) are dangerous for both human beings and the environment, causing health problems, acid rain and photochemical smog.1 The NOx removal technology is therefore in high demand, especially in the case of diesel engine exhaust, where excessive oxygen (5~15%) making the reduction of NOx (200~1500 ppm) extremely difficult. The mature technologies for NOx removal under oxygen rich conditions require a reducing agent, either from extra fuel or supply of urea/ammonia, which greatly added the system complexity and raised concerns on spill management and secondary pollution.2

One attractive technology under development is electrochemical NOx reduction, where NOx was decomposed to N2 and O2 by electron supplied to a solid oxide cell (SOC) (Eqs. 1 and 2). This technology eliminates the need for the addition of reducing materials and shows the potential to be a simpler and advantageous method compared to the commercial ones.3

\[
\text{Cathode: } 2\text{NO}_x + 4\text{e}^- \rightarrow \text{N}_2 + x\text{O}_2^{2-} \quad [1]
\]

\[
\text{Anode: } 2\text{O}_2^{2-} \rightarrow \text{O}_2 + 4\text{e}^- \quad [2]
\]

A high selectivity towards NO3 decomposition (deNO3) is crucial for electrochemical NOx reduction in order to suppress the competitive reaction of O2 (Eq. 3).

\[
\text{Cathode: } \text{O}_2 + 4\text{e}^- \rightarrow 2\text{O}_2^{2-} \quad [3]
\]

To achieve satisfactory deNOx selectivity, noble metals have been used extensively as electrode materials because of their excellent catalytic activity. However, the noble metal electrodes suffer from issues such as high cost and poor thermal durability. With respect to noble-metal-free deNOx cell, Huang et al. adopted the structure and composition of solid oxide fuel cells and achieved an effective NOx conversion less than 8%. The BaO impregnation enhanced the NOx conversion to NO2 to N2 on the BaO impregnated LSM/CGO cell.

Experimental or Theoretical

The oxidation catalyst contains 2 wt% La0.9Sr0.1CoO3-δ washcoat on a cordierite monolith. The blank cell was fabricated by screen printing a (La0.85Sr0.15)0.95MnO3±δ/Ce0.9Gd0.1O1.95 composite slurry on both sides of a dense Ce0.9Gd0.1O1.95 tape. The blank cell was then impregnated with BaO nanoparticles. The cell was connected to a Gamry Reference 600+ potentiostat for electrochemical measurements. The outlet gas composition was monitored throughout the test by chemiluminescence (Thermo Scientific 42i HL), mass spectrometry (Pfeiffer Vacuum Omnistar GSD 301). Besides, the blank cell and the BaO impregnated cell without the LSC catalytic system were tested under the same conditions for comparison.

Results and Discussion

The NOx conversion and current efficiency (CE) for the electrochemical system, the BaO impregnated cell and the blank cell were plotted as a function of temperature and voltage in Figs. 2a–2c. The CE is the ratio of the current consumed by NOx reduction to the total current, which is the sum of the current for both NOx and O2 reduction. The value of CE depends not only on the activity of NOx reduction but also on that of O2 reduction, which explains the commonly observed difference in the dependences of the CE and NOx conversion on the temperature.2–3 The perovskite electrochemical system was found to be highly active and selective for NOx reduction under oxygen rich conditions. A deNO3 selectivity of 25–35% was achieved with a NOx conversion of 65~75% in 1000 ppm NO with the presence of 8% O2. In comparison, the blank LSM/CGO cell was almost inactive in the presence of excess oxygen with the maximum NOx conversion less than 8%. The BaO impregnation enhanced the NOx reduction compared to the blank cell above 325 °C, but the selectivity was basically below 10% in the testing range. BaO has been reported as a typical NOx trapping materials which was able to selectively

* Electrochemical Society Member.
† E-mail: shaojing@szu.edu.cn
Figure 1. illustration of the principle in the electrochemical system.

Figure 2. In 1000 ppm NO with 8% O2, a) NOx conversions and b) current efficiencies as a function of temperature under 2.25 V; c) NOx removal properties as a function of voltage at 375°C; d) NO to NO2 conversion modeled by Factssage and measured in the gas inlet, different cells, LSC and Pt/BaO/Al2O3 catalyst.12

adsorb and store NOx species on the electrode surface (Eq. 4).

\[2\text{NO}_2 (g) + \text{O}_2 (g) + \text{BaO} \rightarrow \text{Ba(NO}_3\text{)}_2 \] \[\text{[4]} \]

With respecting to the NOx trapping process over BaO, NO2 has been found to be the sorption precursor or a required intermediate.2 However, in diesel engines exhaust gases, NO is usually the dominant NOx species (~90%). The formation of NO2 is spontaneous in the oxygen-rich atmosphere due to the thermodynamic equilibrium between NO and NO2, whereas this reaction is kinetically limited within a small fraction, especially at low temperatures.2

With the LSC catalyst, the NO2 conversion increased with increasing temperatures within the kinetically limited regime and achieved a maximum of 80% as the equilibrium limit was reached (Fig. 2d). The introduction of LSC catalyst significantly increased the concentration of NO to NO2 in the gas atmosphere, which could in turn promote the NOx trapping process over the BaO sites on the electrodes, especially in the low temperature range.

In addition, the electrode processes of the NOx reduction were investigated by Impedance characterization under various temperatures and atmospheres. The spectra at 400°C, at which temperature the system showed both high conversion and selectivity, were listed in Fig. 3 as typical examples. A large arc was observed dominating in the lowest frequency range of spectrum in 1000 ppm NO only. With the presence of oxygen or changing to 1000 ppm NO2, this arc disappeared. By fitting the spectra using equivalent circuits established for the LSM cathode,5,10,11 the summit frequency, activation energy and frequency exponent of the lowest frequency arc were defined as 0.002~0.006 Hz, 0.9~1.1 eV and 0.72~0.8, respectively. The characteristics of this arc fitted well with a conversion arc originated from the lack of the reaction intermediate NO2 in the NO containing atmospheres.10,11 This finding suggested that the overall reaction was probably impeded by insufficient NO2 formation on the LSM electrode. By relieving the limitation of NO2 formation, the introduction of the LSC catalyst could be able to facilitate the electrochemical NOx
During this period, the system experienced multiple gas changes, voltage hindrance by nitrate formation, similar as in the case of Pt/BaO/Al2O3 oxidation ability of the LSC due to the loss in dispersion and the steric electrode with BaO. The co-infiltration was expected to deteriorate the upstream LSC oxidation catalyst and co-infiltrating the LSC into the cell but a harmful effect on the NOx adsorption materials and NO oxidation catalyst. This was reported to have a positive effect on the electrochemical oxidation catalyst. Only minor degradation was found after 80 hour operation in the model gas, indicating a satisfying durability of the system regarding the operation time. We presume it is related to the good stability of ceramic structure used in the system. Besides, both the gas atmosphere and operation time showed no evident impact on the N2 selectivity.

Table I. Results of preliminary durability test on the electrochemical system.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Simplified gas a%</th>
<th>Model gas initial b%</th>
<th>Model gas –80h%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx Conversion</td>
<td>67.70</td>
<td>61.26(−9.51)</td>
<td>57.53(−6.09)</td>
</tr>
<tr>
<td>C.E.</td>
<td>29.78</td>
<td>24.84(−16.58)</td>
<td>23.48(−5.47)</td>
</tr>
<tr>
<td>N2 selectivity</td>
<td>59.09</td>
<td>63.57(+7.58)</td>
<td>62.07(−2.42)</td>
</tr>
</tbody>
</table>

*1000 ppm NO with 8% O2.
*1000 ppm NO, 8% O2, 5% H2O, 5% CO2.
*The N2 selectivity was calculated as 2 × ΔN2/ΔNOx.
*Deviation versus Simplified gas.
*Deviation versus Model gas initial.

A perovskite electrochemical DeNOx system was developed by combining a La0.9Sr0.1CoO3+δ oxidation catalyst and a BaO infiltrated (La0.85Sr0.15)0.95MnO3±δ, CO2 balanced by Ar for approximately 80 hours (Table I). During this period, the system experienced multiple gas changes, voltage variations and two heating cycles from room temperature to 500°C. The switch from the simplified gas to the model gas resulted in a 9.51% decline in the activity and a 16.58% decline in selectivity, which is apparently associated with the coexistence of H2O and CO2. This was reported to have a positive effect on the electrochemical cell but a harmful effect on the NOx adsorption materials and NO oxidation catalyst. Only minor degradation was found after 80 hour operation in the model gas, indicating a satisfying durability of the system regarding the operation time. We presume it is related to the good stability of ceramic structure used in the system. Besides, both the gas atmosphere and operation time showed no evident impact on the N2 selectivity.

Finally, a preliminary durability test of the electrochemical system was performed by operating the system in a model gas of diesel engine exhaust consisting of 1000 ppm NO, 8% O2, 5% H2O, 5% CO2 balanced by Ar for approximately 80 hours (Table I). During this period, the system experienced multiple gas changes, voltage variations and two heating cycles from room temperature to 500°C. The switch from the simplified gas to the model gas resulted in a 9.51% decline in the activity and a 16.58% decline in selectivity, which is apparently associated with the coexistence of H2O and CO2. This was reported to have a positive effect on the electrochemical cell but a harmful effect on the NOx adsorption materials and NO oxidation catalyst. Only minor degradation was found after 80 hour operation in the model gas, indicating a satisfying durability of the system regarding the operation time. We presume it is related to the good stability of ceramic structure used in the system. Besides, both the gas atmosphere and operation time showed no evident impact on the N2 selectivity.

Summary

A perovskite electrochemical DeNOx system was developed by combining a La0.9Sr0.1CoO3+δ, CO2 balanced by Ar for approximately 80 hours (Table I). During this period, the system experienced multiple gas changes, voltage variations and two heating cycles from room temperature to 500°C. The switch from the simplified gas to the model gas resulted in a 9.51% decline in the activity and a 16.58% decline in selectivity, which is apparently associated with the coexistence of H2O and CO2. This was reported to have a positive effect on the electrochemical cell but a harmful effect on the NOx adsorption materials and NO oxidation catalyst. Only minor degradation was found after 80 hour operation in the model gas, indicating a satisfying durability of the system regarding the operation time. We presume it is related to the good stability of ceramic structure used in the system. Besides, both the gas atmosphere and operation time showed no evident impact on the N2 selectivity.

Acknowledgments

This study was financially supported by Shenzhen Science Innovation Committee (JCYJ20160422152829188, JCYJ20170817110358231, KQJSCX2017032715133249), Guangdong Natural Science Foundation (2017A030310345), National Natural Science Foundation of China (51702221, 51702151) and Research Foundation of SZU (827-000226).

ORCID

Jing Shao https://orcid.org/0000-0002-0514-5642
Kent Kammer Hansen https://orcid.org/0000-0002-1349-958X

References

Figure 3. Impedance spectra (Nyquist plot) on the cells in various gas atmospheres at 400°C.