Application for planning purposes: Interim High-Resolution Wind Resource Map for Strategic Environmental Assessment in South Africa

Mortensen, Niels Gylling; Hahmann, Andrea N.; Hansen, Jens Carsten; Mabille, Eugéne; Prinsloo, Eric

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
WASA 2 Application for planning purposes:
Interim High-Resolution Wind Resource Map for Strategic Environmental Assessment in South Africa

Niels G Mortensen, Andrea N Hahmann & Jens Carsten Hansen
DTU Wind Energy

Eugéne Mabille and Eric Prinsloo
CSIR

WASA 2 Mid-term Workshop
Cape Town, South Africa
Updated wind resource mapping methodology

- **Frogfoot** implementation of WAsP
 - Database of wind climates
 - Database of elevation maps
 - Database of roughness maps
- Principle of operation
 - Batch mode operation
 - Distributed computing
 - Wind atlas interpolation to every prediction site.
 - Results in MySQL database
 - Export to GIS formats
- WAsP 11 standard modelling
 - Industry-standard model
 - Linearized IBZ flow model
 - Default parameters
Available input data for modelling

- Validated Numerical Wind Atlas
 - WRF mesoscale model
 - Virtual mast for every 3/5 km
 - WASA 1 domain: 3 km
 - All of South Africa: 5 km

- Elevation
 - 100-m elevation grid from space shuttle Endeavour (SRTM+, NASA version 3).

- Land cover
 - 300-m land cover grid derived from ESA GlobCover 2009.
 - Transformation table for z_0
WRF 5-km simulated winds

WASA2, mean wind speed (m/s) Oct 2005 - Sept 2013
South Africa power density @ 100 m
WASA1 wind speed @ 100 m
WASA1 power density @ 100 m
Interim High-Resolution Wind Resource Map

Detailed wind resource maps
- 250 × 250 m grid results
- Modelling resolution ~1 m
- 50, 100 and 200 m a.g.l.
- ArcGIS ASC output format

- Mean wind speed U
 - 10 min average in [ms$^{-1}$]

- Mean power density P
 - 10 min average in [Wm$^{-2}$]
 - Site-specific air density

- Elevation z
 - Meters above sea level [m]

- Ruggedness index RIX
 - WAsP standard parameters

Database of wind climates

- For each province
 - 250 × 250 m grid results
 - 50, 100 and 200 m a.g.l.
 - Sector-wise results (×12)
 - ASCII TXT output format

- For each site, height and sector
 - Weibull A parameter [ms$^{-1}$]
 - Weibull k parameter
 - Frequencies of occurrence

- Data for calculation of
 - Specific power density
 - Wind turbine energy yield
 - Wind turbine capacity factor
 - and much more...
Metadata documents for wind resource data sets

- Metadata for data sets
 - Data set specifications
 - Data provider
 - Contact information
- Data set parameters
- Coordinate system
- Technology (models & data)
- Detailed notes
 - Purpose
 - Methodology
 - Limitations
 - Available documentation
 - Acknowledgements
 - Disclaimer
- Four maps of U, P, z and RIX

Interim High-Resolution Wind Resource Map for South Africa

Metadata and further information

October 2017

DTU Wind Energy

DATA PARAMETERS

Mean wind speed: Annual mean wind speed (U m/s) @ 50, 100 and 200 m a.g.l.
Mean power density: Annual mean power density (P_{mean} [W/m²]) @ 50, 100 and 200 m a.g.l.
Terrain elevation: Elevation of modelling site in [m] above mean sea level
Ruggedness index RIX: Site RIX value calculated by WASP (standard parameter setup)

COORDINATE SYSTEM

Projection: Universal Transverse Mercator (UTM)
Zone number: 31S (two provinces) and 38S (seven provinces)
Datum: World Geodetic System 1984 (WGS 84)

TECHNOLOGY

Calculation software: WASP Resource Mapping System with WASP engine version 11
Wind-climatological input: 5-9 km WRF (WRF-based, code name WASA2-10YR-CTM1-100 Y)
Elevation data input: 100 m elevation grid derived from SRTM (NASA version 3)
Kuppersm data input: 300 m land cover grid derived from Landsat 2006 (version 2.3)
Air density input: Standard atmosphere approximation or elevation variations only
Metadata documents for wind resource data sets

- Metadata for data sets
 - Data set specifications
 - Data provider
 - Contact information
- Data set parameters
- Coordinate system
- Technology (models & data)
- Detailed notes
 - Purpose
 - Methodology
 - Limitations
 - Available documentation
 - Acknowledgements
 - Disclaimer
 - Four maps of U, P, z and RIX

- Limitations
 - Operational envelope of WAsP
 - Validated numerical wind atlas (WRF mesoscale model)
 - Input topographical data
 - Complex terrain ($RIX > 5\%$)
 - Built-up areas
 - Forested areas

The wind resource maps are subject to change without notice if and when more accurate and reliable data, models and procedures become available.
Validation at WASA 1 and 2 masts
DEA National Wind and Solar PV SEAs (Phase 1)

SEA Data available for download & public comments

- http://www.csir.co.za/nationalwindsolarena/

National Wind Datasets Download
- Global Horizontal Irradiance
 - Global Horizontal Irradiance (GHI): kWh/m2/annum
- Photovoltaic Yield Static
 - Photovoltaic Yield on fixed tilt plane (kWh(electrical)/kWpeak(installed)/a).
- PV Yield Tracking
 - Photovoltaic Yield with single axis tracking (kWh(electrical)/kWpeak(installed)/a).
- Optimal Inclination
 - Optimal inclination for solar panels

Wind and Solar PV SEA Phase I Study Areas Download

National Solar Datasets Download

Renewable Energy EIA Applications Map and Comment Form Download
WASA data used to identify Wind Technical Areas to inform the Phase 2 Strategic Environmental Assessment for wind and solar energy
Wind farm planning and development (caution!)

• Identification and ranking of potential wind farm sites.
• Initial analyses and design
• Project planning
• Pre-feasibility studies
 – Resource assessment
 – Some site assessment
• Design of measurement campaign
 – Number of masts
 – Siting of masts
 – Orientation of sensor booms
 – Mounting of lightning rod and navigation lights.
Summary and conclusions

- Wind resources in South Africa
 - Large-scale: ~1.22 mio. km²
 - High-resolution: 250-m grids
 - Results in public domain

- Data sets available
 - Detailed wind resource maps
 - Database of wind climates
 - Three heights at every site

- Data sets specifically developed for
 - Strategic Environmental Assessment (SEA)
 - WF planning and development

- Validation and QA in progress
 - Software development phase
 - Comparisons at WASA masts

- Preliminary validation of WASA1 (3-km) to WASA2 (5-km):
 - Mean absolute percentage error (MAPE) decreases 15%
 - Spread decreases by 40%
 - Bias is almost 0%

- WASA 2 and 3 focus areas
 - Land cover data & modelling
 - Long-term extrapolation
 - Atmospheric stability
 - Adaptation of modelling
 - Uncertainty modelling

- WASA 2 ends by end of 2018
 - 3-km mesoscale modelling
 - Updated data and reports
Acknowledgements

The Wind Atlas for South Africa (WASA) project is an initiative of the South African Government – Department of Energy (DoE) – and the project is co-funded by

- GEF through South African Wind Energy Programme
- Danish Support to RE Development in the RSA

WASA Project Steering Committee:

DoE (chair), DEA, DST, UNDP, Danish Embassy, SANEDI
Further information

SANEDI
Dr Thembakazi Mali
Senior Manager
Clean Energy Solutions
thembakazim@sanedi.org.za

Department of Energy
Noma Qase
Director Renewable Energy
noma.qase@energy.gov.za

Technical enquiries
Andre Otto
SANEDI (consultant)
andreotto@afrihost.co.za

SANEDI WASA site
www.wasaproject.info

CSIR Online
www.wasa.csir.co.za

WASA download site
wasadata.csir.co.za/wasa1
Results folder – available files

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Last modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Resolution Wind Resource Map for WASA 1 domain.pdf</td>
<td>1.8 MB</td>
<td>Dec 8, 2017 11:58:58 AM</td>
</tr>
<tr>
<td>Interim High-Resolution Wind Resource Map for South Africa.pdf</td>
<td>2.6 MB</td>
<td>Dec 8, 2017 11:58:58 AM</td>
</tr>
<tr>
<td>South Africa mean power density 100 m.km^2</td>
<td>5.3 MB</td>
<td>Nov 2, 2017 4:37:40 AM</td>
</tr>
<tr>
<td>South Africa mean wind speed 100 m.km^2</td>
<td>4.4 MB</td>
<td>Nov 1, 2017 4:02:08 PM</td>
</tr>
<tr>
<td>WASA1_ZA_EC_250_MP_20171103.zip</td>
<td>59.3 MB</td>
<td>Nov 5, 2017 7:48:41 PM</td>
</tr>
<tr>
<td>WASA1_ZA_NC_250_MP_20171103.zip</td>
<td>41.9 MB</td>
<td>Nov 5, 2017 7:48:18 PM</td>
</tr>
<tr>
<td>WASA1_ZA_WC_250_MP_20171102.zip</td>
<td>56 MB</td>
<td>Nov 5, 2017 7:47:57 PM</td>
</tr>
<tr>
<td>WASA3 WP34-01 Deliverables.pdf</td>
<td>131.7 KB</td>
<td>Dec 8, 2017 11:59:14 AM</td>
</tr>
<tr>
<td>ZA_EC_250_EMPR_20171023.zip</td>
<td>88.6 MB</td>
<td>Oct 28, 2017 6:57:37 PM</td>
</tr>
<tr>
<td>ZA_FS_250_EMPR_20171024.zip</td>
<td>57.4 MB</td>
<td>Oct 28, 2017 7:21:26 PM</td>
</tr>
<tr>
<td>ZA_LP_250(15km)_EMPR_20171031.zip</td>
<td>51.2 MB</td>
<td>Nov 2, 2017 11:26:44 AM</td>
</tr>
<tr>
<td>ZA_LP_250_EMPR_20171024.zip</td>
<td>28.8 MB</td>
<td>Nov 2, 2017 11:27:03 AM</td>
</tr>
<tr>
<td>ZA_NL_250_EMPR_20171025.zip</td>
<td>49.6 MB</td>
<td>Oct 30, 2017 9:57:33 AM</td>
</tr>
<tr>
<td>ZA_NW_250_EMPR_20171025.zip</td>
<td>44.7 MB</td>
<td>Oct 30, 2017 10:29:55 AM</td>
</tr>
<tr>
<td>ZA_WC_250_EMPR_20171023.zip</td>
<td>67.5 MB</td>
<td>Oct 30, 2017 10:30:09 AM</td>
</tr>
</tbody>
</table>
Database folder – available files