Application for planning purposes: Interim High-Resolution Wind Resource Map for Strategic Environmental Assessment in South Africa

Mortensen, Niels Gylling; Hahmann, Andrea N.; Hansen, Jens Carsten; Mabille, Eugéne; Prinsloo, Eric

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
WASA 2 Application for planning purposes:
Interim High-Resolution Wind Resource Map for Strategic Environmental Assessment in South Africa

Niels G Mortensen, Andrea N Hahmann & Jens Carsten Hansen
DTU Wind Energy

Eugéne Mabille and Eric Prinsloo
CSIR

WASA 2 Mid-term Workshop
Cape Town, South Africa
Updated wind resource mapping methodology

- **Frogfoot** implementation of WASP
 - Database of wind climates
 - Database of elevation maps
 - Database of roughness maps

- Principle of operation
 - Batch mode operation
 - Distributed computing
 - Wind atlas interpolation to every prediction site.
 - Results in MySQL database
 - Export to GIS formats

- WASP 11 standard modelling
 - Industry-standard model
 - Linearized IBZ flow model
 - Default parameters
Available input data for modelling

- Validated Numerical Wind Atlas
 - WRF mesoscale model
 - Virtual mast for every 3/5 km
 - WASA 1 domain: 3 km
 - All of South Africa: 5 km

- Elevation
 - 100-m elevation grid from space shuttle Endeavour (SRTM+, NASA version 3).

- Land cover
 - 300-m land cover grid derived from ESA GlobCover 2009.
 - Transformation table for z_0
WRF 5-km simulated winds

WASA2, mean wind speed (m/s) Oct 2005 - Sept 2013

[Map showing wind speed distribution with color scale from 5 to 10]
South Africa power density @ 100 m
WRF 3-km simulated winds

WASA1, mean wind speed (m/s) Oct 2005 - Sept 2013
WASA1 wind speed @ 100 m
WASA1 power density @ 100 m
Interim High-Resolution Wind Resource Map

Detailed wind resource maps
- 250 × 250 m grid results
- Modelling resolution ~1 m
- 50, 100 and 200 m a.g.l.
- ArcGIS ASC output format

- Mean wind speed U
 - 10 min average in [ms$^{-1}$]

- Mean power density P
 - 10 min average in [Wm$^{-2}$]
 - Site-specific air density

- Elevation z
 - Meters above sea level [m]

- Ruggedness index RIX
 - WAsP standard parameters

Database of wind climates

- For each province
 - 250 × 250 m grid results
 - 50, 100 and 200 m a.g.l.
 - Sector-wise results (×12)
 - ASCII TXT output format

- For each site, height and sector
 - Weibull A parameter [ms$^{-1}$]
 - Weibull k parameter
 - Frequencies of occurrence

- Data for calculation of
 - Specific power density
 - Wind turbine energy yield
 - Wind turbine capacity factor
 - and much more...
Metadata documents for wind resource data sets

- Metadata for data sets
 - Data set specifications
 - Data provider
 - Contact information
- Data set parameters
- Coordinate system
- Technology (models & data)
- Detailed notes
 - Purpose
 - Methodology
 - Limitations
 - Available documentation
 - Acknowledgements
 - Disclaimer
- Four maps of U, P, z and RIX

Interim High-Resolution Wind Resource Map for South Africa

Metadata and further information

October 2017

DATA PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean wind speed</td>
<td>Annual mean wind speed (m s^{-1}) at 50, 100 and 200 m a.g.l.</td>
</tr>
<tr>
<td>Mean power density</td>
<td>Annual mean power density (W m^{-2}) at 50, 100 and 200 m a.g.l.</td>
</tr>
<tr>
<td>Terrain elevation</td>
<td>Elevation of modelling site in (m) above mean sea level</td>
</tr>
<tr>
<td>Ruggedness index RIX</td>
<td>Site RIX value calculated by WASP (standard parameter setup)</td>
</tr>
</tbody>
</table>

COORDINATE SYSTEM

- Projection: Universal Transverse Mercator (UTM)
- Zone number: 31S (two provinces) and 38S (seven provinces)
- Datum: World Geodetic System 1984 (WGS 84)

TECHNOLOGY

- Calculation software: WASP Resource Mapping System with WASP engine version 11
- Wind-climatological input: 5-km NWa (WRF-based, code name WASA2-WYN-ROMH-100)*
- Elevation data input: 100 m elevation grid derived from SRTM (NASA version 3)
- Roughness data input: 300 m land cover grid derived from GisCover 2006 (version 2.3)
- Air density input: Standard atmosphere approximation w/ elevation variations only*
Metadata documents for wind resource data sets

- Metadata for data sets
 - Data set specifications
 - Data provider
 - Contact information
- Data set parameters
- Coordinate system
- Technology (models & data)
- Detailed notes
 - Purpose
 - Methodology
 - Limitations
 - Available documentation
 - Acknowledgements
 - Disclaimer
 - Four maps of U, P, z and RIX

- Limitations
 - Operational envelope of WAsP
 - Validated numerical wind atlas (WRF mesoscale model)
 - Input topographical data
 - Complex terrain ($RIX > 5\%$)
 - Built-up areas
 - Forested areas

The wind resource maps are subject to change without notice if and when more accurate and reliable data, models and procedures become available.
Validation at WASA 1 and 2 masts
DEA National Wind and Solar PV SEAs (Phase 1)

SEA Data available for download & public comments

http://www.csir.co.za/nationalwindsolarsea/

- National Wind Datasets Download
- National Solar Datasets Download
- Wind and Solar PV SEA Phase I Study Areas Download
- Renewable Energy EIA Applications Map and Comment Form Download
WASA data used to identify Wind Technical Areas to inform the Phase 2 Strategic Environmental Assessment for wind and solar energy
Wind farm planning and development (caution!)

- Identification and ranking of potential wind farm sites.
- Initial analyses and design
- Project planning
- Pre-feasibility studies
 - Resource assessment
 - Some site assessment
- Design of measurement campaign
 - Number of masts
 - Siting of masts
 - Orientation of sensor booms
 - Mounting of lightning rod and navigation lights.
Summary and conclusions

- Wind resources in South Africa
 - Large-scale: \(\sim 1.22 \text{ mio. km}^2 \)
 - High-resolution: 250-m grids
 - Results in public domain

- Data sets available
 - Detailed wind resource maps
 - Database of wind climates
 - Three heights at every site

- Data sets specifically developed for
 - Strategic Environmental Assessment (SEA)
 - WF planning and development

- Validation and QA in progress
 - Software development phase
 - Comparisons at WASA masts

- Preliminary validation of WASA1 (3-km) to WASA2 (5-km):
 - Mean absolute percentage error (MAPE) decreases 15%
 - Spread decreases by 40%
 - Bias is almost 0%!

- WASA 2 and 3 focus areas
 - Land cover data & modelling
 - Long-term extrapolation
 - Atmospheric stability
 - Adaptation of modelling
 - Uncertainty modelling

- WASA 2 ends by end of 2018
 - 3-km mesoscale modelling
 - Updated data and reports
Acknowledgements

The Wind Atlas for South Africa (WASA) project is an initiative of the South African Government – Department of Energy (DoE) – and the project is co-funded by

- GEF through South African Wind Energy Programme
- Danish Support to RE Development in the RSA

WASA Project Steering Committee:
DoE (chair), DEA, DST, UNDP, Danish Embassy, SANEDI
Further information

SANEDI
Dr Thembakazi Mali
Senior Manager
Clean Energy Solutions
thembakazim@sanedi.org.za

Department of Energy
Noma Qase
Director Renewable Energy
noma.qase@energy.gov.za

Technical enquiries
Andre Otto
SANEDi (consultant)
andreotto@afrihost.co.za

SANEDI WASA site
www.wasaproject.info

CSIR Online
www.wasa.csir.co.za

WASA download site
wasadata.csir.co.za/wasa1
Results folder – available files

- High-Resolution Wind Resource Map for WASA 1 domain.pdf
- Interim High-Resolution Wind Resource Map for South Africa.pdf
- South Africa mean power density 100 m.km²
- South Africa mean wind speed 100 m.km²
- WASA1_ZA_EC_250_MP_20171103.zip
- WASA1_ZA_NC_250_MP_20171103.zip
- WASA1_ZA_WC_250_MP_20171102.zip
- WASA3 WP34-01 Deliverables.pdf
- ZA_EC_250_EMPR_20171023.zip
- ZA_FS_250_EMPR_20171024.zip
- ZA_GT_250_EMPR_20171024.zip
- ZA_LP_250(15km)_EMPR_20171031.zip
- ZA_LP_250_EMPR_20171024.zip
- ZA_MG_250_EMPR_20171025.zip
- ZA_NC_250_EMPR_20171024.zip
- ZA_NL_250_EMPR_20171025.zip
- ZA_NW_250_EMPR_20171025.zip
- ZA_WC_250_EMPR_20171023.zip
Database folder – available files

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Last modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC Prod upd_ClimateSectorwise.zip</td>
<td>2.2 GB</td>
<td>Nov 1, 2017 12:13:07 PM</td>
</tr>
<tr>
<td>FS Prod upd_ClimateSectorwise.zip</td>
<td>1.6 GB</td>
<td>Nov 1, 2017 12:10:28 PM</td>
</tr>
<tr>
<td>GT Prod upd_ClimateSectorwise.zip</td>
<td>242.7 MB</td>
<td>Nov 1, 2017 9:14:57 AM</td>
</tr>
<tr>
<td>LP Prod upd 2_ClimateSectorwise.zip</td>
<td>1.6 GB</td>
<td>Nov 1, 2017 12:09:09 PM</td>
</tr>
<tr>
<td>MP Prod upd_ClimateSectorwise.zip</td>
<td>1014 MB</td>
<td>Nov 1, 2017 9:16:13 AM</td>
</tr>
<tr>
<td>NC Prod upd_ClimateSectorwise.zip</td>
<td>4.7 GB</td>
<td>Nov 1, 2017 12:14:52 PM</td>
</tr>
<tr>
<td>NL Prod upd_ClimateSectorwise.zip</td>
<td>1.3 GB</td>
<td>Nov 1, 2017 11:32:10 AM</td>
</tr>
<tr>
<td>NW Prod upd_ClimateSectorwise.zip</td>
<td>1.3 GB</td>
<td>Nov 1, 2017 12:08:07 PM</td>
</tr>
<tr>
<td>WASA1_Libs_coords.csv</td>
<td>2.1 MB</td>
<td>Nov 30, 2017 2:00:26 PM</td>
</tr>
<tr>
<td>WASA1_Libs_coords.dat</td>
<td>1.7 MB</td>
<td>Nov 30, 2017 3:33:23 PM</td>
</tr>
<tr>
<td>WASA1_Libs.kmz</td>
<td>1.2 MB</td>
<td>Jun 1, 2018 10:16:56 AM</td>
</tr>
<tr>
<td>WASA1_Libs.zip</td>
<td>67.7 MB</td>
<td>Nov 30, 2017 2:00:33 PM</td>
</tr>
<tr>
<td>WASA2_Libs_coords.csv</td>
<td>2.4 MB</td>
<td>Nov 30, 2017 12:58:58 PM</td>
</tr>
<tr>
<td>WASA2_Libs_coords.dat</td>
<td>1.9 MB</td>
<td>Nov 30, 2017 3:33:24 PM</td>
</tr>
<tr>
<td>WASA2_Libs.kmz</td>
<td>1.4 MB</td>
<td>Jun 1, 2018 10:16:56 AM</td>
</tr>
<tr>
<td>WASA2_Libs.zip</td>
<td>77.4 MB</td>
<td>Nov 30, 2017 12:58:47 PM</td>
</tr>
<tr>
<td>WC Prod upd_ClimateSectorwise.zip</td>
<td>1.7 GB</td>
<td>Nov 1, 2017 12:11:45 PM</td>
</tr>
</tbody>
</table>