Microscale modelling and validation

Mortensen, Niels Gylling; Hahmann, Andrea N.; Hansen, Jens Carsten

Publication date: 2018

Document Version Peer reviewed version

Link back to DTU Orbit

Microscale modelling and validation

Niels G Mortensen, Andrea N Hahmann & Jens Carsten Hansen
DTU Wind Energy

Johan Stander, Eugéne Mabile and Eric Prinsloo
CSIR

WASA 2 Mid-term Workshop
Cape Town, South Africa
Validation procedure in general

- Mesoscale modelling using WRF
 - Model setup
 - Reanalysis data
 - Elevation grid
 - Roughness grid
 - Predictions: mesoscale world

- Downscaling procedure
 - From mesoscale to generalised wind climate (PWC to GWC)
 - Wind potential over a flat, featureless, uniform world...

- Numerical wind atlas for SA
 - GWC presented as LIB files
 - Horizontal resolution 5 km

- Microscale modelling using WAsP
 - Model setup
 - Generalised wind climates
 - Elevation map
 - Roughness map
 - Predictions: microscale world

- Microscale modelling
 - From generalised to predicted wind climate (GWC to PWC)

- Measurements @ WASA sites
 - OWC @ several heights

- Validation procedure
 - Comparing OWC and PWC at all WASA mast sites
Meso- and microscale maps

Mesoscale map

Microscale map
WRF 5-km simulated winds

WASA2, mean wind speed (m/s) Oct 2005 - Sept 2013
Wind Atlas for South Africa masts
Validation – WASA1 winds @ 62 m ($z_0 = 3$ cm)

<table>
<thead>
<tr>
<th>WASA mast</th>
<th>Observed wind U_0 [ms$^{-1}$]</th>
<th>WASA1 wind U_1 [ms$^{-1}$]</th>
<th>$U_1 - U_0$ [%]</th>
<th>WASA2 wind U_2 [ms$^{-1}$]</th>
<th>$U_2 - U_0$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM01</td>
<td>6.12</td>
<td>5.66</td>
<td>-8%</td>
<td>6.02</td>
<td>-2%</td>
</tr>
<tr>
<td>WM02</td>
<td>5.94</td>
<td>5.90</td>
<td>-1%</td>
<td>6.32</td>
<td>+6%</td>
</tr>
<tr>
<td>WM03</td>
<td>6.55</td>
<td>5.48</td>
<td>-16%</td>
<td>5.94</td>
<td>-9%</td>
</tr>
<tr>
<td>WM04</td>
<td>6.68</td>
<td>6.54</td>
<td>-2%</td>
<td>6.59</td>
<td>-1%</td>
</tr>
<tr>
<td>WM05</td>
<td>8.10</td>
<td>7.31</td>
<td>-10%</td>
<td>7.47</td>
<td>-8%</td>
</tr>
<tr>
<td>WM06</td>
<td>7.05</td>
<td>6.73</td>
<td>-5%</td>
<td>7.69</td>
<td>+9%</td>
</tr>
<tr>
<td>WM07</td>
<td>6.92</td>
<td>6.02</td>
<td>-13%</td>
<td>6.80</td>
<td>-2%</td>
</tr>
<tr>
<td>WM08</td>
<td>7.18</td>
<td>6.89</td>
<td>-4%</td>
<td>6.91</td>
<td>-4%</td>
</tr>
<tr>
<td>WM09</td>
<td>7.48</td>
<td>7.38</td>
<td>-1%</td>
<td>7.64</td>
<td>+2%</td>
</tr>
<tr>
<td>WM10</td>
<td>6.36</td>
<td>6.30</td>
<td>-1%</td>
<td>6.85</td>
<td>+8%</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (signed)</td>
<td></td>
<td></td>
<td>-6%</td>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>
Validation procedure for WASA 2 masts

- Numerical wind atlas for SA
 - GWC from 5-km LIB files
- Microscale modelling @ each mast
 - WAsP 12 default setup
 - Adapted GWC heights
 - Generalised wind climates
 - Four for each site
 - Elevation map
 - Nine different tested
 - SRTM3+ used for all
 - Roughness map
 - Five different tested
 - No z_0 discretisation
Elevation data summary

Reference is the SUDEM data set

- The NGI ORT files (25-m DEM)
 - Small bias and spread
 - Adequate for flow modelling
 - Some issues comparing tiles

- SRTM3 & SRTM1 (3-/1-sec DSM)
 - Some bias, but small spread
 - Adequate for flow modelling

- CGIAR-CSI & SA20 (20-m contours)
 - Some bias and larger spread
 - Caution when flow modelling

- ASTER (1-sec DEM)
 - Large bias and large spread
 - Not adequate for flow modelling

| Data set | $|\Delta z|$ | $\sigma_{\Delta z}$ |
|----------------|------------|---------------------|
| NGI ORT | -0.32 | 1.65 |
| SRTM3 GL3 | +1.45 | 1.56 |
| SRTM3 v2.1 | +1.45 | 1.56 |
| SRTM1 GL3 | +1.46 | 1.92 |
| SRTM3 CSI | +1.89 | 5.31 |
| SA20 | -1.65 | 3.59 |
| ASTER | -2.86 | 8.55 |

- WASA site elevation maps
 - 40×40 km²: 20-m contours
 - 20×20 km²: 10-m contours
 - 10×10 km²: 5-m contours
Land cover and roughness length

<table>
<thead>
<tr>
<th>Class name (GlobCover)</th>
<th>Class number</th>
<th>RAM z_0</th>
<th>NGM z_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Bodies</td>
<td>210</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Permanent Snow and ice</td>
<td>220</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td>Bare areas</td>
<td>200</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Grassland, savannahs, lichens/mosses</td>
<td>140</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Sparse vegetation</td>
<td>150</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Croplands</td>
<td>11, 14</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Shrubland</td>
<td>130</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Wetlands</td>
<td>180</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Mosaic natural vegetation / cropland</td>
<td>20, 30</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Flooded forest</td>
<td>160</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Mosaic grassland / forest</td>
<td>120</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Flooded forest or scrubland</td>
<td>170</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Urban Areas</td>
<td>190</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Forests</td>
<td>40, 50, 60, 70, 90, 100, 110</td>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>
WM14 Memel input data
WM11 Rhodes (EC)

- Elevation = 2575 m
- Elevation range = 1280-2980 m
- Roughness range = 0-1.0 m
- Ruggedness index = 11%
WM11 Rhodes (EC)

- Elevation = 2575 m
- Elevation range = 1280-2980 m
- Roughness range = 0-1.0 m
- Ruggedness index = 11%

WAsP CFD
WM12 Eston (NL)

- Elevation = 770 m
- Elevation range = 220-1060 m
- Roughness range = 0-1.0 m
- Ruggedness index = 0%
WM13 Jozini (NL)

- Elevation = 80 m
- Elevation range = 40-720 m
- Roughness range = 0-1.0 m
- Ruggedness index = 0%

![Wind speed distribution graph](image)
WM14 Memel (FS)

- Elevation = 2045 m
- Elevation range = 1270-2330 m
- Roughness range = 0.05-0.40 m
- Ruggedness index = 2%
WM15 Winburg (FS)

- Elevation = 1505 m
- Elevation range = 1340-1720 m
- Roughness range = 0-1.0 m
- Ruggedness index = 0%
WASA 2 validation: nearest LIB file method

<table>
<thead>
<tr>
<th>WASA 2 mast</th>
<th>Observed wind U_0</th>
<th>GlobCover wind U_1</th>
<th>$U_1 - U_0$ [%]</th>
<th>ESACCI wind U_2</th>
<th>$U_2 - U_0$ [%]</th>
<th>ESACCI2 wind U_3</th>
<th>$U_3 - U_0$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM11</td>
<td>7.71 [ms$^{-1}$]</td>
<td>7.44 [ms$^{-1}$]</td>
<td>−4%</td>
<td>7.80 [ms$^{-1}$]</td>
<td>1%</td>
<td>8.32 [ms$^{-1}$]</td>
<td>8%</td>
</tr>
<tr>
<td>WM12</td>
<td>5.02 [ms$^{-1}$]</td>
<td>5.02 [ms$^{-1}$]</td>
<td>0%</td>
<td>5.22 [ms$^{-1}$]</td>
<td>4%</td>
<td>5.60 [ms$^{-1}$]</td>
<td>12%</td>
</tr>
<tr>
<td>WM13</td>
<td>5.19 [ms$^{-1}$]</td>
<td>4.89 [ms$^{-1}$]</td>
<td>−6%</td>
<td>4.56 [ms$^{-1}$]</td>
<td>−12%</td>
<td>4.87 [ms$^{-1}$]</td>
<td>−6%</td>
</tr>
<tr>
<td>WM14</td>
<td>7.51 [ms$^{-1}$]</td>
<td>6.80 [ms$^{-1}$]</td>
<td>−9%</td>
<td>7.11 [ms$^{-1}$]</td>
<td>−5%</td>
<td>7.50 [ms$^{-1}$]</td>
<td>0%</td>
</tr>
<tr>
<td>WM15</td>
<td>6.14 [ms$^{-1}$]</td>
<td>5.50 [ms$^{-1}$]</td>
<td>−10%</td>
<td>5.20 [ms$^{-1}$]</td>
<td>−15%</td>
<td>5.51 [ms$^{-1}$]</td>
<td>−10%</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td></td>
<td>6%</td>
<td></td>
<td>8%</td>
<td></td>
<td>7%</td>
</tr>
<tr>
<td>Mean bias</td>
<td></td>
<td></td>
<td>−6%</td>
<td></td>
<td>−6%</td>
<td></td>
<td>1%</td>
</tr>
</tbody>
</table>
WASA 2 validation: average of 4 LIB files method

<table>
<thead>
<tr>
<th>WASA 2 mast</th>
<th>Observed wind U_0</th>
<th>GlobCover wind U_1</th>
<th>$U_1 - U_0$ [%]</th>
<th>ESACCI wind U_2</th>
<th>$U_2 - U_0$ [%]</th>
<th>ESACCI2 wind U_3</th>
<th>$U_3 - U_0$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM11</td>
<td>7.71 [ms$^{-1}$]</td>
<td>8.29 [ms$^{-1}$]</td>
<td>7%</td>
<td>8.63 [ms$^{-1}$]</td>
<td>12%</td>
<td>9.24 [ms$^{-1}$]</td>
<td>20%</td>
</tr>
<tr>
<td>WM12</td>
<td>5.02</td>
<td>4.88</td>
<td>-3%</td>
<td>5.05</td>
<td>1%</td>
<td>5.42</td>
<td>8%</td>
</tr>
<tr>
<td>WM13</td>
<td>5.19</td>
<td>4.93</td>
<td>-5%</td>
<td>4.59</td>
<td>-12%</td>
<td>4.92</td>
<td>-5%</td>
</tr>
<tr>
<td>WM14</td>
<td>7.51</td>
<td>6.72</td>
<td>-11%</td>
<td>7.03</td>
<td>-6%</td>
<td>7.41</td>
<td>-1%</td>
</tr>
<tr>
<td>WM15</td>
<td>6.14</td>
<td>5.52</td>
<td>-10%</td>
<td>5.23</td>
<td>-15%</td>
<td>5.51</td>
<td>-10%</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td></td>
<td>7%</td>
<td></td>
<td>9%</td>
<td></td>
<td>9%</td>
</tr>
<tr>
<td>Mean bias</td>
<td></td>
<td></td>
<td>-4%</td>
<td></td>
<td>-4%</td>
<td></td>
<td>2%</td>
</tr>
</tbody>
</table>
WASA Phase 2 summary and conclusions

• Generalised wind climates (WASA 2 LIB files)
 – Four nearest LIB files give similar results, except in complex terrain
 – Nearest LIB method gives lowest spread, but slightly higher bias
 – Sum of 4 LIBs gives lowest bias, but slightly higher spread
 – LIB interpolation tool available in WAsP 12

• Elevation maps
 – SRTM3+ and 2.1 are excellent global data sets
 – NGI ORT files seem to work very well in South Africa
 – Caution: USGS GDEX, CGIAR-CSI, SA20, ASTER

• Roughness maps
 – GlobCover and ESACCI seem to work best in WASA 2
 – GlobCover gives lowest spread, but slightly higher bias
 – ESACCI gives lowest bias, but slightly higher spread
 – ESACCI is likely the data set we will employ for WASA 2 final runs
Conclusions and further work

- WASA 1 masts validation
 - Mean bias 0%
 - MAPE 5%

- WASA 2 masts validation
 - Mean bias −6% to 2%
 - MAPE 6% to 9%
 - Spread 4% to 11%

- WASA 2 and 3 focus areas
 - Land cover data
 - Land cover to roughness tables
 - Long-term extrapolation
 - Atmospheric stability
 - Adaptation of modelling
 - Uncertainty modelling
Acknowledgements

The Wind Atlas for South Africa (WASA) project is an initiative of the South African Government – Department of Energy (DoE) – and the project is co-funded by

- GEF through South African Wind Energy Programme
- Danish Support to RE Development in the RSA

WASA Project Steering Committee:
DoE (chair), DEA, DST, UNDP, Danish Embassy, SANEDI
Further information

SANEDI
Dr Thembakazi Mali
Senior Manager
Clean Energy Solutions
thembakazim@sanedi.org.za

Department of Energy
Noma Qase
Director Renewable Energy
noma.qase@energy.gov.za

Technical enquiries
Andre Otto
SANEDI (consultant)
andreotto@afrihost.co.za

SANEDI WASA site
www.wasaproject.info

CSIR Online
www.wasa.csir.co.za

WASA download site
wasadata.csir.co.za/wasa1