Carbon nanopillars for enhanced stem cell differentiation and dopamine detection

Bunea, Ada-Ioana; Amato, Letizia; Valsesia, Andrea; Pellacani, Paola; Casci Ceccacci, Andrea; Keller, Stephan Sylvest; Larsen, Niels Bent; Heiskanen, Arto; Emnéus, Jenny

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Carbon nanopillars for enhanced stem cell differentiation and dopamine detection

Ada-Ioana Bunea1, Letizia Amato1, Andrea Valsesia2, Paola Pellacani2, Andrea Casci Ceccacci1, Stephan Sylvest Keller1, Niels Bent Larsen1, Arto Heiskanen1 and Jenny Emnéus1

1: Technical University of Denmark, Department of Micro- and Nanotechnology, Denmark
2: Institute for Health and Consumer - Joint Research Centre - European Commission, Ispra (VA), Italy.

Introduction
Parkinson’s disease is characterized by a deficit of dopamine in the brain, a neurotransmitter involved in the motor function. One of the future ideas for treatment is cell replacement therapy. Our group has previously shown that pyrolyzed 3D carbon micropillars induce spontaneous differentiation of human neural stem cells (hNSCs) into dopaminergic neurons and that they can also be employed for detecting dopamine release from mature neurons attached to them [1]. Here, we report 3D carbon nanopillars, fabricated through colloidal lithography, with even more pronounced effect on the electrochemical detection of dopamine.

Fabrication
The 3D carbon nanopillars were obtained using 1 µm polystyrene beads as etching mask and an etching time of 20 min, leading to structures with a height of 1.2 µm and a diameter of 450 nm (before pyrolysis) and a height of 600 nm and a width of 200 nm after pyrolysis. For comparison, the micropillars we refer to have a height of 11 µm and a diameter of 1.4 µm after pyrolysis.

Stem cell differentiation
Cell line: hVMI-Bd-xL (human ventral mesencephalic neural stem cell line 1).
The cells were seeded and cultured on tissue culture polystyrene (TCP), flat carbon, micropillars and nanopillars (figures 2 and 3) in similar conditions. Differentiation was tested both in the presence and absence of differentiation factors (DF) on all surfaces.

Electrochemical measurements
The electrochemical behaviour of carbon nanopillars was investigated using cyclic voltammetry [Ru(NH3)6Cl2]/Ru(NH3)6Cl3 as standard redox probe (figure 5).

Conclusions
Carbon nanopillars were fabricated using colloidal lithography/pyrolysis and employed as substrate for stem cell differentiation and dopamine detection. Detection of dopamine released from differentiated hNSCs differentiated into dopaminergic neurons is improved on the carbon nanopillars.