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Abstract. We investigate wake effects at the Anholt offshore wind farm in Denmark, which is a farm expe-
riencing strong horizontal wind-speed gradients because of its size and proximity to land. Mesoscale model
simulations are used to study the horizontal wind-speed gradients over the wind farm. From analysis of the
mesoscale simulations and supervisory control and data acquisition (SCADA), we show that for westerly �ow in
particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simula-
tions to derive the undisturbed in�ow conditions that are coupled with three commonly used wake models: two
engineering approaches (the Park and G. C. Larsen models) and a linearized Reynolds-averaged Navier�Stokes
approach (Fuga). The effect of the horizontal wind-speed gradient on annual energy production estimates is not
found to be critical compared to estimates from both the average undisturbed wind climate of all turbines’ po-
sitions and the undisturbed wind climate of a position in the middle of the wind farm. However, annual energy
production estimates can largely differ when using wind climates at positions that are strongly in�uenced by the
horizontal wind-speed gradient. When looking at westerly �ow wake cases, where the impact of the horizontal
wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA
fairly well; when looking at a southerly �ow case, where the wake losses are highest, the wake models tend to
underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity
factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the
uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate the wake losses
(the median relative model error is 8.75 %) and the engineering wake models are as uncertain as Fuga. These
results are speci�c for this wind farm, the available dataset, and the derived in�ow conditions.

1 Introduction

The Anholt wind farm is currently the fourth largest offshore
wind farm in the world power-wise. The layout of the Anholt
wind farm was optimized to minimize wake losses. The num-
ber of wind turbines (111), the wind-turbine type, and the
maximum allowed wind-farm area for turbine deployment
(88 km2) are examples of chosen constraints. The employed
optimization tool has a tendency to place most wind turbines
at the edges of the wind-farm area, while the remaining wind
turbines are placed inside the wind farm with relatively large
interspacing. For the particular case of Anholt, a number of
wind turbines were relocated from the optimized layout due

to seabed that turned out to be too soft (Nicolai Gayle Ny-
gaard, personal communication, 2017).

So far the only reported studies on the wake effects of
this wind farm are those of Nygaard (2014), Nygaard et al.
(2014), and van der Laan et al. (2017). In the �rst, there is a
comparison between the Park wake model (Katic et al., 1986)
and supervisory control and data acquisition (SCADA) for a
row of turbines in the middle of the wind farm for a given
wind-direction and wind-speed range. The wake model es-
timates the wake losses fairly well. The study also presents
the results of the Park model for other large offshore wind
farms, clearly showing that this wake model agrees with the
SCADA for different in�ow conditions rather well. These
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are interesting �ndings because engineering wake models
do not generally include coupling with the vertical struc-
ture of the atmospheric boundary layer; thus, they should
tend to underpredict wake losses in large offshore arrays
(Stevens et al., 2016). However, the studies showing wake-
model underprediction in large offshore wind farms (e.g.,
Barthelmie et al., 2009) analyze the wake observations us-
ing narrow wind direction sectors and do not account for
wind direction variability. In the study by Nygaard et al.
(2014), a comparison of two wake models, Park and the eddy
viscosity model of WindFarmer (GL Garrad Hassan, 2013),
is performed against SCADA, revealing that Park, with a
wake-decay coef�cient k D 0:04, gives better results than the
model of WindFarmer with and without a large wind-farm
correction. In the study by van der Laan et al. (2017), the
effect of the coastline on the wind farm is investigated with
a Reynolds-averaged Navier�Stokes (RANS) model, show-
ing that such a RANS setup is able to predict the horizontal
wind-speed gradient over the wind farm when compared to
the SCADA and mesoscale model simulations.

Engineering wake models are also often regarded as too
simplistic for the estimation of wake losses, yet they are those
that are most used when planning wind-farm layouts and for
annual energy production (AEP) estimations. This is because
they can be easily implemented and optimized in terms of
computational performance. One cannot expect to character-
ize wakes in detail with such models but for the estimation
of power and energy production means, they are suf�ciently
accurate when used properly (Nygaard, 2014; Nygaard et al.,
2014). Peæa et al. (2014) show that the Park model is able
to predict the wake losses of the Horns Rev I wind farm
in the North Sea for different atmospheric stability condi-
tions when using a stability-dependent wake-decay coef�-
cient. Peæa et al. (2016) show that the Park model is in good
agreement with the Sexbierum cases in which two more so-
phisticated wake models are also tested: a linearized RANS
solution (Fuga) and a nonlinear solution of the RANS equa-
tions that uses a modi�ed k-" turbulence model. In the last
two studies, the high accuracy of the Park model is partly a
result of accounting for the variability in the wind direction
(Gaumond et al., 2014). Since Fuga is a computationally ef-
�cient wake model, whose results (in terms of wind-speed
de�cits) are nearly equal to those of a nonlinear solution of
the RANS equations (Ott et al., 2011), we want to �nd out
how different AEP and capacity factor estimates are when
compared to those of Park and of another wake model that is
a simple solution of the RANS equations, the G. C. Larsen
model (Larsen, 2009).

Wake models of all types have been mainly evaluated
against offshore wind farms that are well off the coast or
where the effect of the land is assumed to be minimal
(Barthelmie et al., 2009; RØthorØ et al., 2013; Stevens et al.,
2016). The layout of the Anholt wind farm offers the possi-
bility of investigating the effect of land proximity (� 20 km
in the predominant wind direction) on the wind-farm produc-

tion. We are aware that the Anholt wind farm experiences
strong horizontal wind-speed gradients, which are translated
into power gradients for turbines that are not experiencing
wakes (Damgaard, 2015). Another example of the effect of
the land on an offshore wind farm, in this case in the Baltic
Sea, is provided by Dörenkämper et al. (2015). The chal-
lenge is therefore to �nd out how such gradients interfere
with the wake losses and how these affect the production
and the AEP. This can be performed by simple �coupling�
of undisturbed1 wind climates at some (or all) turbines’ posi-
tions, in which the horizontal wind-speed gradient is embed-
ded, with the wake models. To the authors knowledge, there
have not been attempts to study the impact of the horizontal
wind-speed gradient on wakes of wind farms using engineer-
ing wake models yet, although there is an attempt to include
wind-direction gradients (Hasager et al., 2017). An obvious
choice to derive the wind climate is the use of a mesoscale
model such as the Weather Research and Forecasting (WRF)
model (Skamarock et al., 2008), which is today often used
multi-purposely in the wind-energy community (Storm and
Basu, 2010; Hahmann et al., 2015; Platis et al., 2018). In the
present work, we also want to investigate the ability of WRF
to model the horizontal wind-speed gradient over the wind
farm.

In this study, we �rst present (Sect. 2) a general back-
ground regarding the Anholt wind farm, the WRF mesoscale
runs that we use to estimate the wind-farm climate, the wind-
farm SCADA, the wake models, and the ways in which we
account for the horizontal wind-speed gradient and estimate
the wake models’ uncertainty. Section 3 presents the results
regarding the in�uence of the wind-speed gradient on �ow
cases and on the AEP, the results showing the evaluation of
the wake models for two �ow cases, and the analyses of the
capacity factor, power loss, and model uncertainty. Finally,
discussion and conclusions are given in the last two sections.

2 Methods

2.1 De�nitions

We de�ne the ef�ciency of the wind farm at a given wind
speed U as

�U D
P
iPi

ntPU
; (1)

where Pi is the power of each individual turbine in the farm,
PU the power of the turbine from the power curve at U , and
nt the number of turbines in the wind farm.

We de�ne the power loss of the wind farm as

PLD 1�
h
P
iPii

nthPfreei
; (2)

where hi means ensemble average and Pfree is the power of
the free-stream turbines (these are de�ned in Sect. 2.2.2).

1Undisturbed refers to a wake-free condition in this study.
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We de�ne the relative wake model error as

� D
PLobs�PLmod

PLobs
; (3)

where the subscripts obs and mod refer to observations and
model, respectively.

2.2 Anholt wind farm

The Anholt wind farm is located in the Kattegat strait
between Djursland and the island of Anholt in Denmark
(Fig. 1a). It consists of 111 Siemens 3.6 MW-120 turbines
with a hub height of 81.6 m and a rotor diameter of 120 m
(Fig. 1b). The smallest distance between the turbines is 4.9
rotor diameters. The water has depths of 15�19 m, the wind
farm area is 88 km2, and full operation started in summer
2013.

2.2.1 SCADA

We have access to 10 min means of SCADA for the period
from 1 January 2013 to 30 June 2015. Data include nacelle
wind speed, yaw position, pitch angle, rotor speed, power ref-
erence, air temperature, rotor in�ow speed, and active power.
We also produce a �ltered SCADA dataset by identifying pe-
riods when each turbine was grid connected and produced
power during the entire 10 min period. The dataset excludes
periods when any turbine was either parked or idling, those
with starting and stopping events, and where power was cur-
tailed or boosted. We �nd turbine nos. 1, 36, 65, and 68 to
be boosted with power values 5 % above the rated value. The
result is a time series of 7440 10 min values starting in July
2013 until December 2014.

2.2.2 In�ow conditions

Due to the lack of undisturbed mast measurements in the
SCADA, we derive the in�ow conditions from the �ltered
SCADA dataset. We estimate an �equivalent� wind speed
based on either the 10 min SCADA’s power or pitch an-
gle values in combination with the manufacturer’s power
curve or the average pitch curve extracted from the SCADA.
The in�ow reference wind speed is computed as the aver-
age equivalent wind speed for groups of four undisturbed tur-
bines as shown in Table 1. A group of four turbines is used
to robustly estimate the in�ow wind speed and 10 different
sectors are needed to avoid the in�uence of Djursland and
the island of Anholt. The in�ow reference wind direction is
computed as an average yaw position for pairs of undisturbed
wind turbines listed in Table 1. The yaw position calibration
is performed as in Rodrigo and Moriarty (2015). The tur-
bines that we use to derive the in�ow conditions are shown
in Fig. 1b.

Table 1. Free-stream turbines used to determine the in�ow wind
speed (�rst two columns) and the in�ow wind direction (second two
columns) as a function of an average yaw position.

Yaw (deg) Turbine no. Yaw (deg) Turbine no.

0�35 65, 76, 110, 111 0�30 65, 111
35�55 106, 107, 108, 109 30�90 111, 86
55�90 86, 87, 88, 89
90�180 45, 66, 67, 68 90�210 1, 86
180�215 32, 43, 44, 45
215�230 6, 7, 8, 9 210�330 1, 16
230�270 22, 23, 24, 25
270�280 17, 18, 19, 20
280�310 23, 24, 25, 26
310�360 30, 65, 76, 111 330�360 65, 111

2.3 Wind-farm climate

We perform simulations of the wind climate over a region
covering the Anholt wind farm using the WRF version 3.5.1
model. Simulations are carried out on an outer grid with hor-
izontal spacing of 18 km� 18 km (121� 87 grid points), a
�rst nested domain of 6 km� 6 km (280� 178 grid points),
and a second nest with its center in the middle of Jutland,
Denmark, of 2 km� 2 km (427� 304 grid points). The simu-
lations use 41 vertical levels from the ground to about 20 km.
The lowest 12 levels are within the 1000 m of the surface
with the �rst level at � 14 m. Initial boundary conditions
and �elds for grid nudging come from the European Centre
for Medium-Range Forecasts ERA-Interim Reanalysis (Dee
et al., 2011) at 0.7�� 0.7� resolution. Other choices in the
model setup are standard and commonly used in the model-
ing community. Further details regarding the simulations are
provided in Peæa and Hahmann (2017). Figure 2 shows the
Anholt wind climate at hub height at a WRF grid point in the
middle of the wind farm based on the WRF hourly outputs
for 2014 (the model is run for 1982�2015). The model out-
put is logarithmically interpolated to hub height. Most winds
come from the west, south-southwest, and southeast direc-
tions and winds between 5 and 15 m s�1 are the most fre-
quent (the all-sector mean wind speed is 9.23 m s�1 at hub
height).

2.4 Wake models

We use three different wake models: the Park wake model
with the commonly used offshore value of k D 0:04, the G.
C. Larsen model (Larsen, 2009), and Fuga (Ott et al., 2011).
The �rst two are engineering wake models and Fuga is a lin-
earized �ow solver of the steady-state RANS equations us-
ing an actuator-disk approach. For the two engineering wake
models, the local wake de�cits �i are superposed to com-
pute the speed de�cit at the nth turbine. This is performed in
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2.2 Anholt wind farm

The Anholt wind farm is located in the Kattegat strait between Djursland and the island of Anholt in Denmark (Fig. 1-left).

It consists of 111 Siemens 3.6 MW-120 turbines with hub height of 81.6 m and a rotor diameter of 120 m (Fig. 1-right). The

smallest distance between the turbines is 4.9 rotor diameters. The water has depths of 15…19 m, the wind farm area is 88 km2

and full operation started in summer 2013.5
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Figure 1. (Left) the Anholt wind farm (red markers) in the Kattegat. (Right) The layout and numbering of the turbines of the Anholt wind

farm in UTM32 WGS84. Turbines used to derived the in”ow conditions are shown in red and cyan markers

2.2.1 SCADA

We have access to 10-min means of SCADA for the period January 1, 2013 to June 30, 2015. Data include nacelle wind speed,

yaw position, pitch angle, rotor speed, power reference, air temperature, rotor in”ow speed, and active power. We also produce

a “ltered SCADA dataset by identifying periods where each turbine was grid connected and produced power during the entire

10-min period. The dataset excludes periods where any turbine was either parked or idling, those with starting and stopping10

events, where power was curtailed, or boosted. We “nd turbines nr. 1, 36, 65, and 68 to be boosted with power values 5% above

the rated value. The result is a time series of 7440 10-min values starting in July 2013 until December 2014.
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Figure 2. The wind climate at hub height in the middle of the An-
holt wind farm for the year 2014 based on WRF simulations.

two different ways: linearly
Pn
iD1�i and as a quadratic sum

�Pn
iD1�

2
i
�1=2.

Due to the high computational ef�ciency of these wake
models, we can easily perform wake analyses over given
wind-speed and wind-direction ranges and AEP-like calcu-
lations using the values in the time series (no need for distri-
butions). For the latter calculations, we create lookup tables
(LUTs) for each wake model, which contain the total wind-
farm power output for speci�c undisturbed wind directions
and wind speeds. Figure 3 shows a comparison of the ef�-
ciency of the wind farm (Eq. 1) predicted by the wake mod-
els. All wake models show the highest wake losses at the

directions in which most wind turbines are aligned, i.e., at
� 160 and 340�, and 45 and 235�. At 5 m s�1, the Park linear
model generally shows the highest wake losses followed by
Larsen linear and Fuga models (within the direction in which
turbines are most aligned). At 5 and 10 m s�1, �� 0.9 for all
wake models excluding the most aligned directions, with the
Larsen quadratic and Park linear models showing the highest
and lowest ef�ciencies, respectively.

2.5 Accounting for the wind-farm gradient

One way to account for the effect of the horizontal wind-
speed gradient within a wind farm, which is not the result
of wake effects themselves, on the wind-farm power output
is by estimating the wake losses using the undisturbed wind
speed and direction at each individual turbine position for
each time realization as in�ow condition instead of using a
single undisturbed wind speed and direction as it is com-
monly performed. At each turbine position, we will there-
fore have both a time series of velocity de�cits (and thus
power values) because of the change with time of in�ow con-
ditions and a time series, with a number of members equal to
the number of turbines in the farm, of velocity de�cits for
each in�ow condition experienced by each turbine for each
time realization. Then, the wind-farm power time series, as
an example, can be estimated by averaging the power result-
ing from all in�ow conditions for the same time realization
(for the Anholt case this means 111 conditions) and then av-
eraging the results of all turbines. This is hereafter known
as a gradient-based analysis. The wind and in�ow at each
turbine must be undisturbed and so mesoscale model simula-
tions over the wind-farm area (without the wind farm) are an
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Figure 3. The ef�ciency of the Anholt wind farm predicted by the wake models at 5 m s�1 (a) and 10 m s�1 (b).

obvious option to estimate the wind climate at each turbine
position.

Due to the very high ef�ciency of the Park model (in a
MATLAB script it takes milliseconds to perform one simula-
tion of Anholt for a single in�ow wind speed and direction),
when using the WRF hourly time series, we can perform 111
simulations (i.e., 111 different in�ow conditions that are in-
terpolated from the WRF grid into the turbine positions) in
a couple of seconds. Thus, we can perform a gradient-based
AEP analysis with hourly WRF winds in just few hours. It is
important to note that we can perform traditional (i.e., with
a single in�ow condition per time realization) AEP calcula-
tions with all wake models much faster using pre-computed
LUTs.

2.6 Uncertainty estimation

We quantify the uncertainty of the wake models using a non-
parametric circular-block bootstrap similar to the approach
of Nygaard (2015). The idea is to �wrap� the power-output
time series (from both measurements and simulations) of
the wind farm around a circle. Blocks of the time series
with a given size, which is here selected according to Poli-
tis and White (2004) based on the wind-speed time series,
are then randomly sampled. The number of sampled blocks
is given by the total size of the time series and the block
size. The number of bootstrap replications should be large
enough to ensure a close-to-zero Monte Carlo error. By boot-
strapping the power-output time series, we can estimate the
bootstrapped PL (Eq. 2) and so estimate a distribution of �
(Eq. 3). Details and code implementations of a number of
bootstrapping techniques can be found in Sheppard (2014).

3 Results

The analysis of the in�uence of the horizontal wind-speed
gradient in Sect. 3.1 is performed with the WRF model out-
puts for 2014 and the �ltered SCADA dataset. For AEP esti-
mations (Sect. 3.1.1), we only use WRF model outputs. The
westerly �ow case in Sect. 3.1.2 uses the �ltered SCADA
dataset, as well as the south �ow case in Sect. 3.1.3, and the
WRF model outputs. For the capacity factor calculations in
Sect. 3.2, we use all the SCADA results available for 2014
and the WRF model outputs for the same year. The analyses
of the power loss and model uncertainty in Sect. 3.3 and 3.4
are performed on the �ltered SCADA.

3.1 In�uence of the wind-farm gradient

Figure 4 shows the mean horizontal wind-speed gradient at
hub height in and surrounding the Anholt wind farm based
on simulations from the WRF model for the year 2014. The
left frame shows the average for all wind speeds and direc-
tions and the right frame the average for all wind speeds and
directions within 270� 30�, which have been �ltered using
the simulated wind direction at hub height at the position of
turbine 15. The in�uence of Djursland (see Fig. 1a) on the
wind at the farm is clear even for the omnidirectional case.
The impact of Djursland is much stronger when looking at
westerly winds so we could expect an impact on the results
of wake models when the �ow is particulary from these di-
rections. The horizontal wind-speed gradient is mainly due
to the roughness effect of the land surrounding the wind
farm (van der Laan et al., 2017). Although it is not shown,
the island of Anholt east of the farm also has an impact on
the wind speed at the wind farm for northeasterly �ow but
this is not as strong as that of Djursland for westerly �ow.
For westerly winds (270� 30�), the WRF-simulated aver-
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age hub-height wind-speed difference between turbine nos. 1
and 30 is 0.62 m s�1, whereas for easterly winds (90� 30�)
it is 0.12 m s�1 between turbine nos. 86 and 111.

In Fig. 5a we extract the values from Fig. 4 at each turbine
position by linearly interpolating the WRF winds to the tur-
bine positions. For the omnidirectional case, the horizontal
wind-speed gradient is lower than for westerly winds, as ex-
pected, and for both cases the strongest gradient is observed
for the �rst row of turbines (1�30), which are those closer to
Djursland.

Figure 5b shows SCADA-derived and WRF-simulated av-
erage wind speeds at hub height for turbine nos. 1�30 for
a number of westerly �ow cases. We select �ltered SCADA
based on the in�ow conditions described in Sect. 2.2.2 within
the wind-speed range 5�10 m s�1 and use the manufacturer’s
power curve to derive each turbine’s wind speed from the
power output. For the comparison, we extract the WRF-
simulated winds by averaging the horizontal wind-speed
components on the corresponding free-stream turbines for
each direction range as given in Table 1. We also select
WRF-simulated winds within the same wind-speed range 5�
10 m s�1. It is observed that the horizontal wind-speed gra-
dient for westerly winds depends on the particular direction.
The strongest simulated and observed gradients are found at
265� 5�, with the winds at turbine nos. 1�15 being lower
than those at turbine nos. 15�30. Generally, the simulated
gradient agrees with the observations fairly well, except for
the range 295� 5�, in which the SCADA shows the highest
winds at the southern turbines. This can be an effect of the
topography on the turbines, which is not captured by WRF.
It could also be a wind-farm wall effect (Mitraszewski et al.,
2012). A similar effect (not shown) is observed when analyz-
ing the SCADA-derived wind speeds of the turbines south of
each row for a direction of 80�90�: the wind speed at turbine
no. 1 is about 6 % higher than that at turbine no. 86.

3.1.1 Annual energy production

The difference in AEP when accounting for the wind-farm
gradient information and when assuming a horizontally ho-
mogenous wind �eld2 is lower than 1 % when using the 2014
hourly WRF wind �elds combined with the wake models
(�average wind �eld� column in Table 2). This is because,
in general for this wind climate, there are positive or neg-
ative errors in the production estimations that are balanced
during the year. The highest difference is observed for the
WRF�Fuga setup, in which the estimation using the �aver-
age wind� does not balance for the low energy yield of the
turbines in the south of the farm and the high energy yield of
those in the north as it does for the other WRF-wake model
setups.

2Estimated each hour by taking the average of the horizontal
wind-speed gradient over each turbine of the farm.

The difference in the AEP estimation by accounting for
the wind-speed gradient and that by using the wind climate
of turbine no. 1, which is the position with the lowest average
wind speed, is larger than 1 % for the engineering wake mod-
els. Such a difference is rather large considering that the AEP
of the wind farm is � 1889.3 GW h when averaging all mod-
els’ AEP estimations using the wind-gradient information.
The same exercise using the information of turbine no. 54
(in the middle of the farm) results in differences very close
to those using the average wind �eld. Using the information
of turbine no. 65 (at the top of the farm), the difference is
also large but positive as expected. For the Anholt wind farm
and its wind climate, in particular, these results show that al-
though accounting for the wind-farm gradient is important,
it does not largely change the AEP estimations compared
to those based on a one-point wind climate, unless the lat-
ter is not close to the average wind climate within the wind-
farm area. For comparison purposes (e.g., with the results in
Fig. 5a) the yearly average wind speed of the �homogenous�
wind is 9.21 m s�1.

3.1.2 Westerly �ow cases

Given the impact of the horizontal wind-speed gradient on
the AEP estimations (Sect. 3.1.1), it is relevant to study the
wake losses under westerly �ow conditions. Figure 6a shows,
for 2014, the average WRF�Park quadratic power of each
turbine in the wind farm when �ltering for westerly wind di-
rections (using the WRF-simulated wind climate at turbine
no. 15), both accounting for the wind-speed gradient, as de-
scribed in Sect. 2.5, and assuming a homogenous wind �eld
(the average of the wind climates at each turbine). For a broad
wind-direction range, both results are nearly identical and
only small differences at speci�c turbines (up to 27.2 kW)
are found when the wind-direction range is reduced; in this
latter case we use the range that shows the largest gradients in
Fig. 5b. It is important to note that, although it is not seen, the
normalized average power of turbines 1�30 for the two �gra-
dient� cases in Fig. 6a is slightly lower than 1 as expected.

Since the horizontal wind-speed gradient does not seem to
strongly impact the wake behavior for broad wind-direction
ranges, we compare the SCADA that have been wind-speed
and direction �ltered with the wake models in Fig. 6b. The
in�ow conditions are derived from the SCADA (see Table 1)
and are used to run the wake models. After �ltering for wind
speed and direction (5�10 m s�1 and 270� 30�), 735 10 min
cases are left. In this case the power values are not normal-
ized with the power of a unique turbine, as they are for the
plot in the top frame. Instead, we use the undisturbed tur-
bine that is closest to that from where we are extracting the
power from. This aids to levelize the SCADA mainly at tur-
bine nos. 1�30. The wake models generally agree with the
SCADA, particularly Fuga, and along with this the engi-
neering wake models’ variants using the linear sum of wake
de�cits generally show the highest wake losses. For turbine
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Figure 4. WRF-simulated mean wind speed at hub height in the Kattegat area where the Anholt wind farm is deployed for the year 2014.
All data are shown in the left frame and data within the directions 270� 30� at the position of turbine no. 15 are shown in the right frame.
Color bars are in meters per second.

Figure 5. (a) WRF-simulated average wind speed at hub height at the turbine positions of the Anholt wind farm. (b) Average wind speed at
hub height (normalized by that of turbine 15) at the most westerly row of the wind farm for a number of westerly �ow cases: WRF winds in
solid lines and SCADA-derived winds in markers.

nos. 31�60, where the wind farm experiences single and dou-
ble wakes mostly, the SCADA are between the models’ re-
sults. For turbine nos. 66�111, where multiple wakes occur,
Larsen quadratic highly underestimates the wake and the lin-
ear variants and Fuga seems to generally agree better with
the SCADA. However, the comparison is not completely fair
with the wake models because the reference power is not al-
ways higher than or equal to that of the individual turbines
when these are supposed to be in the wake of a turbine. For
example, in the case of turbine no. 31, we use turbine no. 3
as reference and in � 19 % of the cases with the in�ow con-
ditions analyzed in Fig. 6b, P3 < P31.

3.1.3 Southerly �ow case

Figure 7 illustrates the wake loss for the north�south row in
the middle of the wind farm (turbine nos. 45�65) �ltering for

in�ow conditions (9� 0.5 m s�1 and 168.7� 15�, which is
the direction in which turbine nos. 45 and 46 are aligned)
that are derived from the SCADA of turbine nos. 45 and
66�68 (Table 1). After �ltering for wind speed and direc-
tion, 26 10 min cases are left. As expected from the results
in Fig. 6b, for this multiple wake case, the models using the
linear variant agree better with the SCADA than those using
the quadratic variant when going deeper in the row. The Park
quadratic model predicts the wake loss of the �rst three tur-
bines rather well but underpredicts it when moving deeper in
the row. The results from Fuga are between the engineering
model’s variants.

Because the differences between SCADA and models in
Fig. 7 are relatively large and the amount of 10 min peri-
ods for the southerly �ow case are 26 only, we also perform
actuator-disk RANS simulations in EllipSys3D (Słrensen,
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Table 2. Difference (in percentage) between different types of AEP calculations and that using the horizontal wind-speed gradient informa-
tion from the WRF simulations.

Model setup Average wind �eld Turbine no. 1 Turbine no. 54 Turbine no. 65

WRF�Park quadratic 0.05 �1.29 0.08 0.26
WRF�Park linear 0.05 �1.33 0.07 0.26
WRF�Larsen linear 0.05 �1.28 0.08 0.27
WRF�Larsen quadratic 0.06 �1.24 0.08 0.27
WRF�Fuga 0.76 �0.59 0.77 0.98

Figure 6. Normalized average power of each turbine in the wind farm for westerly �ow conditions. (a) From simulations using the 2014 WRF
time series and Park quadratic with (gradient) and without (homogeneous) the horizontal wind-speed gradient information. (b) From SCADA
and simulations from the wake models within the range 270� 30� and hub-height in�ow wind speed of 5�10 m s�1. For the SCADA, the
shaded region indicates � the standard error of the mean.

2003) using a modi�ed k-" turbulence model (van der Laan
et al., 2015). The results of the RANS model are very close
to those of Fuga and Larsen linear, also underestimating the
wake loss. We can only speculate that for this particular case,
the high wake loss from the SCADA is due to atmospheric
conditions, in particular from periods under a rather stable at-
mosphere, that we are not accounting for in the simulations.
However, we do not have useful observations to directly de-
rive stability. We have atmospheric stability measures from
the WRF simulations but instantaneous WRF stability mea-
sures are highly uncertain (Peæa and Hahmann, 2012). Ny-
gaard (2014) shows the same case using another SCADA
period and the wake losses are � 10 % lower than those we
observe.

3.2 Capacity factor

Being able to estimate the AEP (Sect. 3.1.1) is important but
it is more interesting to �nd out whether we are able to pre-
dict it, in our particular case, with the combined mesoscale-
wake setup. For the exercise, the capacity factor is a better
choice than the AEP since we can compare Anholt with other
offshore wind farms.

We use all the SCADA data that are available for 2014.
Theoretically, there should be 52 560 10 min samples for this
year. However, the number of samples per turbine available
in the SCADA varies and is never the theoretical one; the tur-
bine with the highest number of samples is no. 7 (51 648) and
that with the lowest is no. 77 (49 512). The average availabil-
ity, taking into account all turbines, of observed samples is
98.10 %. Table 3 shows the observed and estimated capacity
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Figure 7. Normalized average power of the north�south row
of turbines in the middle of the wind farm for southerly �ow
conditions from SCADA and simulations from the wake models
within the range 168.7� 15� and hub-height in�ow wind speed of
9� 0.5 m s�1. For the SCADA, the shaded region indicates � the
standard error of the mean.

Table 3. Observed and estimated (from the WRF-wake model
setup) capacity factors of the Anholt wind farm for 2014. The esti-
mated values account for the observed average availability of sam-
ples. The last column shows the power loss based on the SCADA
and the power loss estimations from wake models without WRF
coupling.

Source Capacity Power
factor (%) loss (%)

SCADA 51.75 4.08
WRF�Park quadratic 53.19 3.64
WRF�Park linear 51.89 5.05
WRF�Larsen linear 52.87 3.87
WRF�Larsen quadratic 54.13 2.60
WRF�Fuga 52.51 3.70

factors, which are predicted by the WRF-wake model setup
and that account for both the wind-farm gradient and the ob-
served average availability of samples.

It is clear that we can estimate the observed capacity fac-
tor using the WRF-wake model setup fairly well. However, it
is important to note that wind turbines are not always work-
ing and underperform when compared to the manufacturer’s
power curve. The predicted AEP or capacity factor of a com-
bined mesoscale-wake model is typically higher than the ob-
served value; however, we want to know the capacity factor
of a wind farm regardless of the operating conditions.

3.3 Power loss

Table 3 also shows the wind farm PL based on the SCADA’s
7440 10 min values and using Eq. (2) with the in�ow condi-
tions as de�ned in Table 1. The results for the wake models
are computed interpolating the models’ LUTs with the same
in�ow conditions derived from the SCADA. All models, ex-
cept for Park linear, predict lower PLs than the SCADA; Park
quadratic, Larsen linear, and Fuga slightly underestimating
the wake loss.

One way to show that the estimations of power of the free-
stream turbines are sound is to compare the manufacturer
power curve with the SCADA-derived power (averaging the
power of the turbines in Table 1) and SCADA-derived in�ow
wind speed. This is illustrated in Fig. 8a, where we show
the power curve of the turbine and the SCADA-derived val-
ues (no interpolation is made). Figure 8b shows a similar
comparison but in this case we derive the gross wind-farm
power (i.e., 111 times the power of the free-stream turbines)
and that derived from the power curve at the estimated free
wind speed. Both �gures show that our de�nition of the free-
stream turbines is sound (no evident wake effects are ob-
served) and that the turbines do follow the manufacturer’s
power curve.

However, this does not give us an idea about the validity
of the SCADA-derived in�ow conditions for the turbines that
are far from those we use to derive the in�ow conditions. By
�ltering the SCADA-derived in�ow conditions for westerly
�ow (270� 30�), so that no wakes are observed for turbine
nos. 1�30, we can derive power curves for the turbines at the
beginning and end of that row (i.e., nos. 1 and 30) and com-
pare them to, for example, the manufacturer’s power curve.
As expected, the power curves for turbines nos. 1 and 30 are
below and above the manufacturer’s power curve, the dif-
ference for turbine no. 1 being as high as 500 kW, which is
the turbine with the lowest average wind speed according to
the WRF simulations (Fig. 5a). Within the wind-speed range
where we observe such differences in power, the difference
in wind speed is about 1 m s�1.

3.4 Model uncertainty

Also based on the SCADA’s 7440 10 min values, we �nd an
optimal block length for the circular bootstrap of 242 sam-
ples. On average, such sample length corresponds to about
10 days, which is long enough to capture the correlation
between samples. We use 10 000 bootstrap replications and
�nd that, for example, � for the Park quadratic model sta-
bilizes after 2000 replications. Figure 9 shows the distribu-
tion of � for all models where positive � values denote a
model that overestimates the power (underestimates the wake
loss), whereas negative � values denote a model that under-
estimates the power (overestimates the wake loss).

For the particular case of the Anholt wind farm and for the
�ltered SCADA used in the analysis, Larsen linear has the
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Figure 8. (a) Power curve of the turbines at the Anholt wind farm derived from the SCADA of free-stream turbines compared to the
manufacturer power curve. (b) Gross wind-farm power derived from the SCADA for the free-stream turbines compared to that derived from
the power curve (PC).

Figure 9. Distribution of the relative model error � in estimating
power losses (Eq. 3) of three wake models using 7440 10 min boot-
strapped samples from the Anholt wind-farm SCADA. The mean
of each distribution is shown with a thicker vertical line. The mean
and standard deviation of the distributions of �, h�i, and �� are also
given.

distribution with lowest bias and the second largest � value
(after Park linear), whereas Larsen quadratic has the high-
est bias and lowest � values. The results for Park quadratic
and Fuga are similar, both bias and � . Park linear, as ex-
pected due to the previous results, is the only model that
systematically overestimates the wake loss. If we could ex-
trapolate these results to an AEP analysis, we would expect
non-conservative AEP estimations (except for Park linear),
with Park quadratic, Fuga, and Larsen linear being slightly
optimistic and Larsen quadratic too optimistic.

4 Discussion

It is important to note that some of our results depend on the
methods we use to derive the undisturbed in�ow conditions
of the wind farm. We show that for power analyses of indi-
vidual turbines, whose in�ow conditions are greatly affected
by the horizontal wind-speed gradient (like turbine nos. 1 or
30), this is an important matter (see Fig. 8a). For this particu-
lar wind farm and wind climate, the differences between the
undisturbed in�ow conditions derived from turbines in the
middle of the long rows and the in�ow conditions derived
from turbines to either side of the rows compensate for the
overall wind-farm long-term analyses (e.g., AEP and capac-
ity factor). One way to further analyze the impact of differ-
ent in�ow conditions is to derive them for each individual
undisturbed turbine. We can then potentially perform analy-
ses (�ow cases, power loss, and capacity factor) in a similar
fashion as that we use for accounting for the horizontal wind-
speed gradient3 and validate our �ndings.

We also estimate the power loss and the uncertainty of
the wake models based on a rather discontinuous and short
�ltered SCADA dataset. Therefore, our results might be bi-
ased and caution must be taken when generalizing our �nd-
ings. A clear example is that related to the model uncer-
tainty, where we �nd that most wake models underestimate
the wake losses. With a longer dataset, the biases can change
(and models might start to produce conservative results) but
the relative position of the models will most probably be
maintained, Park linear and Larsen quadratic being the most
conservative and most optimistic models, respectively. If the

3We cannot derive the undisturbed horizontal wind-speed gradi-
ent from wake-affected turbines without a wake model.
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same models are evaluated with SCADA from other wind
farms, the biases will most probably change.

We show that our WRF-wake model setup is able to rather
accurately predict the capacity factor of the Anholt wind
farm. Anholt is the offshore wind farm with the highest all-
life capacity factor in Denmark (49.4 %) and the highest in
the world for a wind farm older than 2 years, outperforming
Horns Rev II, which has, in principle, more favorable wind
conditions. One of the reasons for this is the Anholt wind-
farm layout, which highly minimizes the wake losses.

The results for the two �ow cases illustrate what we al-
ready expected; Park linear shows the highest and Larsen
quadratic the lowest wake de�cits. This is mainly because of
the values we choose for the wake decay coef�cient. It is im-
portant to note that we can obtain similar wake de�cits with
both the Park linear and Park quadratic models when tuning
the wake decays. Physically, it makes more sense to linearly
sum the wake de�cits but the quadratic approach is normally
used due to a historical general good match of model predic-
tions with observed power de�cits, for the values normally
suggested for the wake decay (0.04�0.05 for offshore con-
ditions). The RANS model shows similar values to Fuga, as
expected due to the similarity of the models’ physics, both
showing a better comparison to the SCADA for the two �ow
cases than the traditional Park quadratic model, also as ex-
pected.

5 Conclusions

For the Anholt wind farm, we show from both the SCADA
and WRF model simulations that for a number of wind direc-
tions, there is a clear in�uence of the land on the free-stream
wind speed at the positions of the turbines closer to the coast.
However, for AEP calculations for which we run three dif-
ferent wake models using mesoscale model outputs as in�ow
conditions, accounting for the horizontal wind-speed gradi-
ent (also derived from the mesoscale model results) does not
have a large impact on the results when compared to AEP
calculations based on, �rst, a wind climate that is the average
of all wind climates at the turbines’ positions and, second,
a wind climate correspondent to a position in the middle of
the wind farm. It does, however, differ from the calculation
using a wind climate that is strongly in�uenced by the hor-
izontal wind-speed gradient particularly for the engineering
wake models.

We look at two �ow wake cases with two different en-
gineering wake models and some of its variants and a lin-
earized RANS model. The �rst case corresponds to westerly
winds, for which the in�uence of the horizontal wind-speed
gradient is largest. Here the wake models, and Fuga in par-
ticular, agree with the SCADA fairly well. The second case
corresponds to southerly winds, for which the wake losses
are highest. Here, the wake models tend to underestimate
the wake de�cit when compared to the SCADA. This is also

translated into a wake-model tendency to underestimate the
observed power loss, on average 0.31 % less than that derived
from the SCADA.

Using our mesoscale-wake model setup, we �nd that
the estimated capacity factors are 0.27�4.60 % biased when
compared to those computed from the SCADA. Finally, us-
ing in�ow conditions derived from the SCADA and by circu-
larly block bootstrapping these, we estimate the relative error
of the wake models. We �nd that these models tend to under-
estimate the wake losses, except for one wake model variant.
The engineering wake models are found to be as good as
the linearized RANS Fuga model. However, these are results
that are wind farm and SCADA speci�c and that depend on
the de�nition of in�ow conditions; therefore similar analyses
need to be reproduced at different wind farms, using more
SCADA and different methods to derive the in�ow condi-
tions.
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