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Abstract: This paper reports an investigation of the effects of process parameters on the quality
characteristics of polymeric parts produced by micro injection moulding (�IM) with two different
materials. Four injection moulding process parameters (injection velocity, holding pressure, melt
temperature and mould temperature) were investigated using Polypropylene (PP) and Acrylonitrile
Butadiene Styrene (ABS). Three key characteristics of the mouldings were evaluated with respect
to process settings and the material employed: part mass, �ow length and �ash formation.
The experimentation employs a test part with four micro �ngers with different aspect ratios
(from 21 up to 150) and was carried out according to the Design of Experiments (DOE) statistical
technique. The results show that holding pressure and injection velocity are the most in�uential
parameters on part mass with a direct effect for both materials. Both parameters have a similar effect
on �ow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness
decreased below 300 �m. The study shows that for the investigated materials the injection speed and
packing pressure were the most in�uential parameters for increasing the amount of �ash formation,
with relative effects consistent for both materials. Higher melt and mould temperatures settings
were less in�uential parameters for increasing the �ash amount when moulding with both materials.
Of the two investigated materials, PP was the one exhibiting more flash formation as compared with
ABS, when corresponding injection moulding parameters settings for both materials were considered.

Keywords: micro injection moulding; design of experiments; part mass; �ow length; �ash formation

1. Introduction

For the mass production of micro products, micro injection moulding (�IM) represents one of the
most important manufacturing processes because it matches the capabilities of a low-cost process and
the requirements of micro products, such as dimensions in the sub-millimetre range and low tolerances
(in the order of few micrometres down to the sub-micrometre range). Components manufactured
successfully by micro injection moulding �nd applications into the following main sectors: medical
and biomedical, automotive industry, telecommunication area, IT components and aerospace. In all
these applications, the replication of component micro features is a key issue which determines the
reliability of the selected manufacturing route. Replication �delity depends greatly on the feature size,
aspect ratio and surface area.

Quality characteristics in �IM are usually associated with the ability to completely �ll the micro
scale features in the mould cavity during processing. To improve the quality of injection moulded

Micromachines 2018, 9, 58; doi:10.3390/mi9020058 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-5071-7830
http://dx.doi.org/10.3390/mi9020058
http://www.mdpi.com/journal/micromachines


Micromachines 2018, 9, 58 2 of 19

micro components many research groups worldwide have investigated in recent years different factors
affecting the replication capabilities of the process. In particular, this includes research in process
optimization, material rheology, design and manufacture of tools and development of new tooling
technologies [1].

Micro cantilevers are one of the key elements in micro sensors (e.g., biochemical sensors,
calorimetry sensors, humidity sensors, accelerometers, atomic force microscopes, etc.) because they
are sensitive to small changes in mass and temperature. Polymeric micro cantilever structures with
high aspect ratios (i.e., the ratios between the length and thickness of a cantilever �nger), can be
fabricated by �lling with polymer melt the micro cantilever/�ngers cavities. While the cross-sectional
area decreases, the �ow length becomes increasingly limited because the melt cools and solidi�es
rapidly in the cavities. This is caused by the increased surface-to-volume ratio and is common for other
micro scale parts. The �lling process in micro injection moulding is more complex because of peculiar
phenomena happening at the micro scale such as high heat transfer at the melt-mould wall interface,
presence of wall slip, in�uence of surface tension, compressibility of the melt and pressure-dependent
viscosity. All the aspects that have been reported are affecting �IM at levels that are different from
those encountered in injection moulding of conventionally-sized components [2].

Many experimental and theoretical studies have been conducted to determine the most in�uential
factors for improving �lling performance in micro injection moulding. Most studies tried to �nd
the relationship between the process parameters and the achievable �lling length, or the replication
quality. The main factors investigated by researchers have been: melt and mould temperature, injection
velocity, hold pressure and holding time. Their direct effect on the melt �ow property and �ow status
is proven in conventional injection moulding.

The importance of those factors has been assessed for different applications, including micro�uidic
systems [3,4], micro channel moulding optimization [5�7], replication of micro ribs and micro
features [8�20] and the effects of the processing parameters on micro cantilever using micro �ngers
dimensions as output response [1,2,21,22].

In literature, the �lling mechanism of micro injection moulding appeared to be still not fully
understood. The main conclusions from these studies show little agreement among them. In particular,
there is a limited accordance with respect to which parameters have the most in�uence on the quality
of the part. Each study has found a different set of signi�cant parameters. This is probably due to
the fact that different experimental investigations have employed tools with different mould design
features (i.e., sprue and runner dimensions, gate design, cooling/heating layout, etc.) as well as
different cavity geometry design. Further causes for limited agreement lie on the fact that different
materials have been used. Therefore, the process windows employed are not only set at different levels
but have different extensions, i.e., the same parameters investigated in different studies are varied
within different intervals. Last but not least, also data treatment may have an in�uence, particularly
for multi-variate analysis and in presence of interactions among parameters. For examples, in some
of the studies found in literature, e.g., [1,6,7,9,11,21,22], research is carried out either by using the
DOE technique or by using the one-factor-at-the-time approach to study the effect of a set of process
parameters on a response.

Nevertheless, a shared result among the recent research trends [3,11,17,19,21,22], indicates that
one of the major factor in�uencing both process signi�cance factors and the replication quality of
micro injected components is the aspect ratio, intended as the height/length ratio, of the designed and
replicated features.

The purpose of this study is to improve the understanding of the behaviour of polymer melt
�lling through micro cantilever/�ngers cavities and to study the correlation between �ow length
and �ash formation using a uni�ed DOE approach for both an amorphous polymer (Acrylonitrile
Butadiene Styrene) and a semi-crystalline polymer (Polypropylene). Both materials could be moulded
using the same process window, therefore allowing for an understanding of replication and �ash
formation behaviour related to the actual material properties. The experiments examined the effects of
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four process parameters and four different aspect ratio 21, 30, 50, 150 in replicating micro �ngers with
both polymer materials using part mass, �ow length and �ash formation as part quality outputs in
order to identify which process parameters are the most in�uential during the �lling stage of the micro
injection moulding process.

2. Materials and Methods

2.1. Polymeric Materials

Two commercially available un�lled materials used in conventional injection moulding (IM)
such as Polypropylene (PP, trade name 400-GA05), manufactured by INEOS Ole�ns Polymers Europe
(London, UK) and Acrylonitrile Butadiene Styrene (ABS, trade name Terluran GR35), manufactured
by BASF (Ludwigshafen, Germany), were selected for the experiments. Figure 1 shows the viscosity
characteristics and pvT data (pressure, speci�c volume and temperature) for the two polymers. Each
polymer went through desiccant drying and dehumidifying cycles before the injection moulding trials,
to remove any surface or absorbed moisture.
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2.2. Part Geometry and Tooling

The main body of the part had a rectangular shape (20 mm � 10 mm � 1.5 mm) with four
cantilever/�ngers. The four �ngers had the same length, 15 mm, the same width, 3 mm and
different thicknesses: 700 �m, 500 �m, 300 �m, 100 �m. Figure 2 illustrates all the dimensions
of the micro-�ngers and the test structure. The main body adjoining the four cantilever/�ngers had
a depth of 1.5 mm. This is where the melted polymer expanded after passing through the gate and
homogenized before entering into the cantilevers. Four venting channels were placed at the end of
each cantilever to improve air evacuation. The outside dimensions of the mould insert were 85 mm �
85 mm � 4 mm and the material was pre-hardened tool steel. A single open gate design was used.
The gate had the same depth as the cross-sectional thickness of the main body, thus reducing the �ow
resistance and premature freeze-off of the gate. The test geometry was designed in such a way that it
facilitated a relatively simple measurement procedure of the moulded cantilevers thus reducing any
error source coming from the measuring strategy.
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obtained with laser confocal microscope using a 20� magni�cation objective (numerical aperture = 0.60).
(*) Interval indicates estimated measurement uncertainty including repeatability, resolution and
instrument calibration.
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A high-speed precision milling process was used to generate the cavities. Afterwards, a polishing
process was applied to the cavity walls in order to obtain a surface roughness in the range of 40�110 nm
(see Figure 2). Such level of roughness ensured that the polymer �ow was not affected by the presence
of surface topography, even for very thin cavities as in the case of the cantilevers considered in this
study. Recent studies on the effect of surface roughness on the polymer �ow on micro cavities have
shown that the mould surface topography affects the �ow length when the average surface roughness
in in the range of 500 nm to 10 �m for thicknesses of 50 �m, 100 �m, 200 �m, 250 �m, 1000 �m,
corresponding to a roughness-to-thickness ratio of 0.25% up to 4.0% [24�26]. On the contrary, mould
surface roughness in the range between 40 nm and 170 nm on cavities with thickness in the range
between 250 �m to 1000 �m, corresponding to a roughness-to-thickness ratio of 0.01% up to 0.02% has
shown to have no in�uence and no statistical signi�cance on the polymer �ow length [25,26].

2.3. Experimentation

Injection moulding experiments were carried out on an Arburg (Loßburg, Germany) Allrounder
370A injection moulding machine which has a maximum clamping force of 600 KN and a screw
diameter of 18 mm. The investigated parameters were injection velocity (Vi), holding pressure (Ph),
melt temperature (Tb) and mould temperature (Tm). These parameters were considered as factors
affecting the optimization of the micro injection moulding process. The criteria used for selecting
the maximum and minimum values of these process parameters took into account the equipment
characteristics, process feasibility and materials characteristics. The process parameters levels were
as follows:

� Melt temperature:

- (Min) 240 �C was selected as the lowest melt temperature following the recommendation
of the material supplier.

- (Max) 270 �C was selected as the highest melt temperature following the recommendation
of the material supplier.

� Mould temperature:

- (Min) 20 �C was the lowest temperature allowing micro �nger replication and complete
�lling of the cavity.

- (Max) 60 �C was selected as the highest melt temperature following the recommendation of
the material supplier, in order to allow successful demoulding of the part from the cavity.

� Holding pressure:

- (Min) 10 MPa for PP materials and 20 MPa for ABS materials, which provided acceptable
shrinkage compensation and dimensional accuracy.

- (Max) 60 MPa for PP materials and 70 MPa for ABS materials were the maximum values
allowing automatic demoulding without distortion.

� Injection velocity:

- (Min) 140 mm/s was selected based on experimentation. This was the minimum injection
speed that allowed the part to �ll completely.

- (Max) 220 mm/s was selected based on experimentation. This was the highest injection
speed at which a continuous injection moulding process could be achieved.
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The design of experiment (DOE) approach was applied to assess the effects of four parameters,
each varying between a maximum and minimum value. This approach allowed all investigated
process parameters to be taken into account simultaneously, in assessing their main effects. In this
way, it was possible to systematically investigate process and/or product related variables that
in�uenced the product and/or process quality, respectively. In particular, process conditions and part
characteristics that affect product quality and cost could be identi�ed, in order to improve the product
manufacturability, quality, reliability and production quantities [27].

Factorial design is frequently used in experiments involving several factors and when it is
necessary to study the factors main effects and interactions on various responses. Two different
approaches can be distinguished when implementing DOE studies: full-factorial design, widely used
when it is necessary to investigate the joint effects of several factors on a response and fractional
factorial designs that are applied to reduce experimental efforts of large DOE studies, mostly for
screening purposes. In this research, a two-level four-factor full-factorial design with resolution V (24)
was applied, scheduling 16 treatments, which were carried out as shown in Table 1. The 16 treatments
were executed following a randomly ordered succession.

For each run, the machine was run to �rstly complete 50 continuous cycles in order to stabilize
the process, then the following 21 parts were collected and numbered for subsequent inspection.
Figure 3 shows a photograph of the 21 moulded samples from one of the DOE settings that were
used for the analyses. Given that two different materials were considered, two DOE full-factorial
designs with resolution V (24) were applied for both materials. In addition, 21 trials were performed
for each combination of controlled parameters. Thus, in total 21 � 16 � 2 = 672 experimental trials
were carried out.

The mass of each moulded part and the runner mass were measured using a sensitive scale with a
resolution of 0.01 mg and the averages of the measured masses were recorded and analysed. The �ow
lengths were measured for the different aspect ratio features using an optical quality control CNC
coordinate measuring machine (CMM) having a resolution of 0.5 �m and an accuracy 4 �m.

Table 1. Two-level four-factor full-factorial design.

Standard Order Vi Ph (PP/ABS) Tb Tm

1 �(140 mm/s) �(10/20 MPa) �(240 �C) �(240 �C)
2 +(220 mm/s) �(10/20 MPa) �(240 �C) �(240 �C)
3 �(140 mm/s) +(60/70 MPa) �(240 �C) �(240 �C)
4 +(220 mm/s) +(60/70 MPa) �(240 �C) �(240 �C)
5 �(140 mm/s) �(10/20 MPa) +(270 �C) �(240 �C)
6 +(220 mm/s) �(10/20 MPa) +(270 �C) �(240 �C)
7 �(140 mm/s) +(60/70 MPa) +(270 �C) �(240 �C)
8 +(220 mm/s) +(60/70 MPa) +(270 �C) �(240 �C)
9 �(140 mm/s) �(10/20 MPa) �(240 �C) +(270 �C)

10 +(220 mm/s) �(10/20 MPa) �(240 �C) +(270 �C)
11 �(140 mm/s) +(60/70 MPa) �(240 �C) +(270 �C)
12 +(220 mm/s) +(60/70 MPa) - (240 �C) +(270 �C)
13 �(140 mm/s) �(10/20 MPa) +(270 �C) +(270 �C)
14 +(220 mm/s) �(10/20 MPa) +(270 �C) +(270 �C)
15 �(140 mm/s) +(60/70 MPa) +(270 �C) +(270 �C)
16 +(220 mm/s) +(60/70 MPa) +(270 �C) +(270 �C)
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3. Analysis of the Results

3.1. Factors Affecting Part Mass

Complete mould �lling and process stability are among the most important quality criteria for
process quality assessment and are here represented by part mass. Figure 4 shows the effect of process
parameters in the 16 DOE combinations on average part mass for both materials. It shows that the
average mass of both materials had the same trends across the 16 treatments. Maximum mass for
both materials was obtained at treatments 4, 8, 12, 16 which had a high level of processing parameters.
On the other hand, minimum mass for both materials was obtained at 1, 5, 9 and 13, which had a low
level of the processing parameters. ABS materials yielded a larger mass than PP materials for all the
16 treatments due to the difference in speci�c volume, as clearly indicated by the pvT plot represented
in Figure 1b.

Figure 5 shows the Pareto charts of the standardized effect on the average mass for ABS (Figure 5a)
and PP (Figure 5b) considering a signi�cance of � = 0.05. The effect of holding pressure was the larger
on the results for both materials. A remarkable effect was given also by injection velocity and its
second order interaction with holding pressure, also common to both materials. In Figure 6 are also
represented the main effect plots corresponding to part mass as responses for ABS and PP materials
respectively. The effect of holding pressure on part mass was expected, since increasing the holding
pressure allowed for more material to �ll the mould cavity and to compensate for shrinkage before
complete freezing, hence increasing its mass.

Increased injection velocity was shown to be a source of increasing part mass. This is due to the
fact that higher velocity led to an increase in shear rate, which in turn decreased the viscosity of the
polymer and allows for improved �ow inside the mould cavity. Furthermore, higher injection velocity
implied higher maximum injection pressure, which increased the quantity of material injected due to
material compressibility (also visible in the pvT plot represented in Figure 1b).
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Figure 4. Average part mass for each experimental run for both materials ABS and PP. Note 1:
error bars on histograms indicate standard deviation (SD). Note 2: Coef�cient of Variation
COV% = average/SD � 100%.

For these reasons, the effect of injection velocity on the average mass was an increase of 3.6% and
3.3% for ABS and PP parts respectively.

Higher process settings resulted on higher repeatability with the same trends and dependency
on the four parameters for both materials. A low level of injection velocity also reduced the process
stability. In Figure 6c and especially Figure 6d the main effects plots of the measured mass samples
show that the process standard deviation is reduced from 1.4 mg to 0.2 mg for PP and from 0.4 mg
to 0.3 mg in the case of ABS. Optimal process conditions could lead to a relative standard deviation
(i.e., coef�cient of variation = average/standard deviation) of 0.1% or below, as shown in Figure 6e,f.
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Figure 6. Main effects plot of: average part mass for ABS (a) and PP (b), standard deviation of part
mass for ABS (c) and PP (d), coef�cient of variation for ABS (e) and PP (f).

3.2. Factors Affecting Finger Filling Flow Length

Flow length is one of the most important quality criteria in injection moulding and it is particularly
critical with micro scale geometries with thin walls and high aspect ratios. Flow length was used in
this research to evaluate the �lling capacity of the moulding system, especially with respect to the
aspect ratio (A/R), i.e., the ratio between the length of the �nger and its thickness. The different aspect
ratios studied were 21, 30, 50 and 150 respectively. Figures 7 and 8 show a histogram chart of the four
�ngers average �lled length in each experimental run for ABS and PP respectively. Figure 9 shows the
main effect plots for �lled lengths with respect to processing parameters and �ngers thickness for both
ABS and PP materials.

From Figures 7 and 8 it can be seen that the length of �nger No. 1 (thickness = 700 �m) and
�nger No. 2 (thickness = 500 �m) was approximately the same for the both polymer materials
ABS and PP. However, there are clearly differences in �nger No. 3 (thickness = 300 �m) length
especially in treatments 1, 5, 9 and 13 where holding pressure and injection velocity were at the
minimum level: the �nger length was very short compared to �nger No. 1 and �nger No. 2 for the
same treatments, for both polymer materials ABS and PP. In addition, for ABS in treatment 2 and
10, where holding pressure and melt temperature were at the minimum level the �nger length is
shorter compared to �nger No. 1 and �nger No. 2 for the same treatments. For �nger number 4
(thickness = 100 �m), the polymer �ow was in fact obstructed so the �nger length was very short for
all 16 treatments, as shown in Figures 7 and 8: the maximum �ow length was approximately 5.5 mm
(A/R = 55). Figures 7 and 8 show also that PP yielded a �ow length longer than with ABS; this was
due to the different viscosities, particularly at higher processing temperatures. These observations
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are summarized in Figure 9, where Pareto charts show the signi�cant factors for all the treatments,
considering also the �nger thickness and the materials. In particular, the �nger thickness is the
parameter with the highest effect for thin �ngers (case (a) = 100 �m and 300 �m), whereas for thick
�ngers (case (b) = 500 �m and 700 �m), the thickness had lower effect than injection moulding process
parameters such as holding pressure, injection speed and melt temperature. The fact that the parameter
‘Material’ had a low effect means that the two materials have a statistically similar behaviour as far
as the �ow length is concerned. This is particularly true for thicker �ngers, where ‘Material’ was the
parameter with the lowest effect (see Figure 9b).

When the main effects are considered, for �nger No. 1 (thickness = 700 �m, A/R = 21) no
parameters had any more in�uence on the �nger length than another, for either material; �nger
length increased with the increase of all processing parameters, as shown on the main effect plot in
Figure 10a,b. This was due to the fact that thickness of �nger No. 1 is relatively high so the polymers
could �ow easily along its whole length.
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Note 1: error bars on histograms indicate standard deviation (SD). Note 2: Coef�cient of Variation
COV% = average/SD � 100%.

With decreasing �nger thickness, as in �nger No. 2 (thickness = 500 �m, A/R = 30), the polymer
�ow became more dif�cult and a signi�cant effect of process parameters appear. Holding pressure
followed by injection velocity were the most in�uential parameters increasing �nger length, for both
materials, as shown in Figure 10c,d. The holding pressure applied at a switch over point before the
no-�ow temperature is reached allowed more material to �ll the mould cavity before complete freezing
of the melt. Furthermore, increasing velocity led to an increase in shear rate, which in turn decreased
the viscosity of the polymer due to shear thinning, increasing the �ow inside the mould cavity. With a
further decrease in �nger thickness, as in �nger No. 3 (thickness = 300 �m, A/R = 50), the �ow of
polymer became more critical and therefore the optimal processing window was reduced. Speci�c
processing parameters must be set, particularly with materials having higher viscosity, as for ABS in
this case. For the ABS material, holding pressure, injection velocity and melt temperature were the
most in�uential parameters increasing �nger No. 3 length, as shown in Figure 10e. The effect of melt
temperature is caused by the different viscosity characteristics of ABS at 270 �C (see Figure 1a): higher
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temperature decreased the viscosity and allowed the polymer to �ow into the thinner features. For PP,
which has a lower viscosity, holding pressure followed by injection velocity were the most in�uential
parameters that increased �nger length, as shown in Figure 10f. PP could �ow in average 1.1 mm
longer than ABS across the whole DOE, corresponding to a 10.0% longer �ow length. For �nger No. 4,
(thickness = 100 �m thickness, A/R = 150), the �ow length was short for both polymer materials and
the maximum achieved aspect ratio was in average 15 for ABS and 32 for PP. The �ow inside the
very thin �nger was very limited, especially for ABS, which has a higher viscosity. Holding pressure,
injection velocity and melt temperature were the most in�uential parameters increasing �nger No. 4
length for ABS and PP as shown in Figure 10g,h respectively. In average PP could �ow 1.7 mm longer
than ABS across the whole DOE, corresponding to a 112% longer �ow length.

The experiments have demonstrated that for �nger thicknesses of 500 �m and above both materials
could reach the same �ow length in average within the experimental process variability. For �nger
thicknesses of 300 �m and below, PP could �ow longer than ABS with an increasing performance over
ABS for increasingly thinner cavities.
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Figure 10. Main effect plot for the �lling �ow length of ABS and PP materials for the four different
�ngers. (a) Main effect plot ABS �nger No. 1 (thickness = 700 �m); (b) Main effect plot PP �nger No. 1
(thickness = 700 �m); (c) Main effect plot ABS �nger No. 2 (thickness = 500 �m); (d) Main effect plot PP
�nger No. 2 (thickness = 500 �m); (e) Main effect plot ABS �nger No. 3 (thickness = 300 �m); (f) Main
effect plot PP finger No. 3 (thickness = 300 �m); (g) Main effect plot ABS finger No. 4 (thickness = 100 �m);
(h) Main effect plot PP �nger No. 4 (thickness = 100 �m).
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For both materials, the relative importance of the process parameters was consistent in both
amount of effect and trend across the whole DOE and for the four different thicknesses of the �ngers.
In particular it has been demonstrated that for decreasing thicknesses the effect of injection speed and
packing pressure increased with respect to the effect of mould and melt temperature settings, that in
fact remained relatively constant while the �nger thicknesses decreased. This trend was veri�ed for
both PP and ABS, for all four processing parameters and four �nger thicknesses. This means that in
order to extend the �lling �ow length, the main process parameters of in�uence are injection speed
and packing pressure, while increasing melt and mould temperature should be maintained within the
recommended levels for the material as to avoid polymer degradation, long cycle time, deformation
at ejection. This result is valid for different materials (in this case ABS and PP), as long as they are
processed within the same process window and moulding the same geometry.

3.3. Factors Affecting Flash Formation

Flash is de�ned as additional unwanted material on the �nished part, typically forming at the
edge of injection moulded parts where melt �ows from the cavity into thin gaps between parting
surfaces of the injection moulding tool. Flash formation was investigated by Chen et al. in [28]. Flash
was characterized in terms of length, closure time and pressure. However, the part considered in
the experiments was a polycarbonate plate produced by conventional injection moulding having
fairly large dimensions (length = 120 mm, width = 40 mm, thickness = 1.73 mm). Scienti�c research
regarding �ash formation is in fact still rather limited and in particular it has not been performed for
miniaturized or micro moulded parts.

In the present research, �ash formation was investigated for both ABS and PP. In Figure 11
the squared regions on the sample design indicated the locations where �ash occurred. Flash was
measured on the portion designed with letter A, on all moulded parts produced in the DOE, to analyse
the in�uence of moulding material and process parameters on the amount of �ash produced during the
trials. An optical quality control CNC CMM was used to capture calibrated microscopic photographs
for evaluating the amount of �ash formation in the same corresponding position of the moulded parts
for each experimental run for both materials (see Figure 12). The optical CNC CMM was equipped
with a 2� magni�cation lens and had a �eld of view of 3111 �m � 2327 �m in the X and Y directions
respectively, with 768 � 576 pixels of 4 �m � 4 �m in size.
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The measurement uncertainty of the optical CMM when measuring areas was estimated to be
0.6%, meaning that for example when measuring an area of 1 mm2, the uncertainty is 0.06 mm2. This is
considered to be suf�ciently low with respect to the moulding process variability in terms of �ash
formation (see Figure 13) and its repeatability, which is at least one order magnitude higher. The area
of the formed �ash was measured by identifying on the calibrated images the contrast difference on
the image due to the �ash portion (steps A and B in Figure 12). With an image processing software
(SPIP' by Image Metrology A/S, Hłrsholm, Denmark), it was than possible to inscribe the �ash
section in a de�ned polygon (step C in Figure 12). At last the calculation of the area was possible as
area of the de�ned polygon based on pixel counting and calibrated pixel area (step D in Figure 12).
The robustness of the method was veri�ed by replicating ten measurements of the same �ash area.
Afterwards, �ve independent measurements on �ve different parts for each of the 16 DOE process
conditions were performed. An experimental relative standard deviation between 2% and 15% was
observed in more than 95% of the cases (see Figure 13).

Before assessing the DOE results, a preliminary optical imaging inspection showed that �ash
formation for the PP material was higher than for the ABS material for all 16 DOE treatments
(see Figure 14). As shown in the Pareto charts in Figure 15a, the factors signi�cance (consisting
of a p-value lower than 5%) on the average �ash formation for ABS was observed for injection velocity,
holding pressure and melt temperature. These three process parameters were those with the highest
main effect also for PP (see Figure 16b). Both factorial models were validated from a statistical point of
view after a standardised residuals checking and the veri�cation of an R-squared adjusted for the ABS
model of 91.2% and 95.0% for the PP model was carried out.

All the main effects of the full factorial design are reported in Figure 16. The most important
results can be seen from the difference in �ash formation by changing the material from ABS to PP.
Despite in Figure 10g,h an average higher �nger replication was detected when using PP, Figure 16
shows that at the same time PP led to higher �ash formation. In particular, the overall average
�ash area for PP was 3.3 times that the �ash area for parts moulded with ABS (see Figure 16a,b).
This variation can be explained by the different rheology of the two materials. As shown in Figure 1
ABS has a higher viscosity especially at high temperature setting which decreased the �owability
(as shown in the �ow length analysis) but in turn led to lower �ash formation.
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Figure 13. Average �ash area for each experimental run for both materials ABS and PP. Note 1: error
bars on histograms indicate experimental standard deviation (SD). Note 2: Coef�cient of Variation
COV% = average/SD � 100%.
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Figure 14. Images of PP (right) and ABS (left) �ash formation in different process conditions at all the
16 DOE treatments. The gap between the left and right edges of the polymer features is 2.0 mm.
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The same discussion is valid with respect to the high effect on the Injection Velocity. By directly
affecting the shear rate and the viscosity, an injection velocity variation from 140 to 220 mm/s at least
doubled the average �ash area as shown by both Figure 16a,b and clearly indicated by the micrographs
in Figure 13.

The effect of both the holding pressure and melt temperature was due once again in the reduction
of the viscosity of the part and in applying higher pressure with the polymer in a particularly low
viscosity state.

Despite the relatively higher effect of process parameters on �ash formation by PP than by ABS,
it is worth noticing that the relative importance among the parameters (namely the fact that the effect
of injection speed is higher than that of packing pressure, which is higher than the effect of melt
temperature and eventually of that of mould temperature) is consistent for both materials, for the
considered geometry (see Figure 16a,b) and con�rmed by the Pareto analysis (see Figure 15a,b).

Therefore, while to enhance high �ow �lling length high settings of injection speed and packing
pressure are to be preferred, it must be considered in the moulding process design phase that those are
the process parameters that at the same time also promote high �ash formation.
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(b) PP material.
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4. Conclusions

Micro injection moulding is an important process in micro production engineering due to its low
cost and high manufacturing volume. Manufacturing parts with high accuracy and quality is very
important in polymer parts micro manufacture due to their high precision applications. The purpose
of this study was to investigate the effect of several process parameters on multiple quality criteria for
the resulting parts. In this work, the quality criteria considered were the part mass, the �ow length
and �ash amount using micro �ngers test structures.
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Experimental results and statistical analysis showed that:

� Among the four process parameters considered in this research (injection velocity, holding
pressure, melt temperature and mould temperature), results showed that the holding pressure
and injection speed were the most effective on mass and �ow length for both the used materials
(ABS and PP) and the for all considered micro cantilever geometries.

� Flow length was inversely proportional to the thickness of the �ngers high aspect ratio features.
However, a non-linear behaviour was observed across the micro geometries analysed. For �nger
having thickness of 500 �m and above, both ABS and PP had similar �ow length across the
entire process window with similar �lling behaviours. For �nger thickness of 300 �m and below,
PP had an increasingly better �lling performance than ABS as the thickness decreased down to
100 �m. ABS �owability was severely challenged due to its higher viscosity with respect to PP.
The decreasing of thickness gave raise to higher effect of injection speed and packing pressure in
increasing the �ow length, both for PP and ABS.

� The �ash amount created when moulding the PP material was generally larger than the �ash
amount for the ABS material when considering corresponding processing conditions. Injection
speed and holding pressure had higher effects than melt and mould temperature and revealed
to be the most affective parameters on increasing the amount of �ash for both material when
set at high levels. The area of �ash generated when moulding PP was in average 3.3 larger than
that of ABS. However, the relative importance of the four process parameters in promoting �ash
formation was the same for ABS and PP, indicating similarity among the two materials in their
relative sensitivity to changes in moulding parameters settings.

In conclusion, in order to replicate high quality parts with sub-mm thickness and high aspect
ratio features, correct adjustment of the process parameters is crucial. In particular, holding pressure
and injection velocity proved to be very important for part mass and �ow length accuracy. Conversely,
injection velocity and holding pressure had an undesirable effect on the amount of �ash formation.
Indeed, the choice of the polymer material had a large effect on the quality of the part in terms of
�ow length and �ash formation, particularly for the smallest thicknesses (300 �m and 100 �m in this
research). In spite of the fact that a less viscous polymer such as PP can replicate features with higher
aspect ratio, it also promotes higher �ash formation. For this reason, especially when the geometrical
aspect ratio increases, it is crucial to identify the optimum set of moulding parameters to produce a
high-quality part in relation to the corresponding selected polymer.
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