Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli

Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam; Palsson, Bernhard; Antoniewicz, Maciek R.

Published in:
Proceedings of the National Academy of Sciences of the United States of America

Link to article, DOI:
10.1073/pnas.1716056115

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in *Escherichia coli*

Christopher P. Long*, Jacqueline E. Gonzalez*, Adam M. Feistb,c, Bernhard O. Palssonb,c, and Maciek R. Antoniewiczb,1

*Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716; 1Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093; and 1Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark.

Edited by Arnold L. Demain, Drew University, Madison, NJ, and approved November 6, 2017 (received for review September 12, 2017)

Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic robustness, regulation, and areas of kinetic limitation. In this study, whole-genome sequencing and high-resolution 13C-metabolic flux analysis were performed on 10 adaptively evolved *pgi* knockouts of *Escherichia coli*. *Pgi* catalyzes the first reaction in glycolysis, and its loss results in major physiological and carbon catabolism pathway changes, including an 80% reduction in growth rate. Following adaptive laboratory evolution (ALE), the knockouts increase their growth rate by up to 3.6-fold. Through combined genomic–fluxomic analysis, we characterized the mutations and resulting metabolic fluxes that enabled this fitness recovery. Large increases in pyridine cofactor transhydrogenase flux, correcting imbalanced production of NADPH and NADH, were enabled by direct mutations to the transhydrogenase genes *sthA* and *phnA*. The phosphotransferase system component *cr* was also found to be frequently mutated, which corresponded to elevated flux from pyruvate to phosphoenolpyruvate. The overall energy metabolism was found to be strikingly robust, and what have been previously described as latently activated Entner–Doudoroff and glyoxylate shunt pathways are shown here to represent no real increases in absolute flux relative to the wild type. These results indicate that the dominant mechanism of adaptation was to relieve the rate-limiting steps in cofactor metabolism and substrate uptake and to modulate global transcriptional regulation from stress response to catabolism.

Phosphoglucose isomerase (*pgi*) knockouts of *Escherichia coli* are of significant interest in metabolic engineering and have been the subject of many investigations (1). *Pgi* catalyzes the first reaction in glycolysis, the conversion of glucose 6-phosphate (G6P) to fructose 6-phosphate (F6P), which in the wild type during aerobic growth on glucose catabolizes ~70% of glucose (18, 19). Its loss results in a correspondingly severe growth impairment (70–80% lower growth rate) (13, 20) as the oxidative pentose phosphate pathway (oxPPP) and Entner–Doudoroff (ED) pathway must compensate. Several studies have used 13C-metabolic flux analysis (13C-MFA) to characterize *Δpgi*, frequently describing the activation of normally latent (i.e., nonutilized) pathways and a redox imbalance caused by overproduction of NADPH in the pentose phosphate pathway (2, 21–24). The major flux, redox, and growth rate changes caused by loss of *pgi* make it a rich target for ALE experiments (13, 14). Previously, Charusanti et al. (14) adaptively evolved 10 strains in replicate experiments over 50 d of continuous culture in glucose minimal media, reporting significant growth recovery of 3.6-fold. However, no underlying intracellular fluxes have been reported for these strains or any similarly large-scale ALE study of genetic mutants.

To gain fundamental insight into the mechanisms and outcomes of adaptive evolution, both the mutations and the selected-upon phenotype (here, metabolism) must be measured. In this study, we applied high-resolution 13C-MFA and next-generation sequencing to the 10 evolved *Δpgi* strains and the parental strain reported previously (14). Novel mutations were selected upon, rather than a broad metabolic response, is the dominant mechanism of adaptation.

Significance

Understanding how microbes adapt to changing conditions is fundamental to biological science and engineering. For example, adaptation is a key driver of antimicrobial resistance, and adaptive laboratory evolution has become a key tool in biotechnology. Here, we present a comprehensive genetic and fluxomic analysis of 10 adaptively evolved *Escherichia coli* phosphoglucose isomerase (*pgi*) knockout strains. The loss of *Pgi*, a key enzyme in glycolysis, results in massive redirection of carbon catabolic flux and reduction in growth rate. Adaptive evolution results in a 3.6-fold increase in growth rate, enabled by key mutations and metabolic flux rewiring. These include global transcriptional regulators, cofactor transhydrogenases, and the phosphotransferase system component *cr*. Overcoming key bottlenecks, rather than a broad metabolic response, is the dominant mechanism of adaptation.

Author contributions: C.P.L. and M.R.A. designed research; C.P.L. and A.M.F. performed research; J.E.G. contributed new reagents/analytic tools; C.P.L., J.E.G., A.M.F., B.O.P., and M.R.A. analyzed data; and C.P.L. and M.R.A. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

1To whom correspondence should be addressed. Email: mranton@udel.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716056115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1716056115
identified, and comparisons to recently reported wild-type ALE studies (5, 6) helped to identify mutations unique to Δpgi. Together with complimentary fluxomic information, a detailed picture of how Δpgi metabolically adapts to achieve faster growth is attained. Areas of convergence and divergence on the genetic and fluxomic levels highlight the large number of genetic solutions possible for achieving similar metabolic phenotypes as well as some differences in metabolic optima. In several cases, specific causal mutation–flux relationships were identified.

Results

Recovery of Growth Fitness in Δpgi ALE Strains Is Associated with Unique Mutations. In E. coli K-12 MG1655, the knockout of pg i results in a reduction in growth rate of ~80% compared with the wild type, from 0.72 h−1 to 0.14 h−1. Following ALE, a significant fraction of this growth rate can be recovered (46–71% of the wild-type growth rate, Fig. L4). These 2.4- to 6-fold increases in growth rate are quite large compared with, for example, similar ALE experiments with wild-type E. coli, which reported 1.6-fold increases in growth rate (5).

To assess the genetic basis of the large increases in growth rate, whole-genome sequencing was performed and sequences were mapped to the E. coli reference to identify mutations in 10 independent ALE experiments. Recent advances in sequencing allowed for improved determination of mutations in clones isolated from final populations, particularly of insertion sequences (IS elements), compared with a previous effort that utilized both a microarray hybridization-based method and an earlier Illumina short-read technology protocol (14). In all, 52 unique mutations were identified across the 10 ALE strains, spanning 34 different genetic regions (29 structural mutations—i.e., within an ORF—and 5 intergenic regions). The complete mutation table is in Supporting Information. A key advantage and reason for using replicate ALE experiments is to use mutation frequency to help differentiate causal mutations from genetic “hitch-hikers” that do not affect fitness (5). Fig. 1B lists the genes that were mutated in ≥2 of the 10 Δpgi ALE strains as well as the genes frequently mutated in reported wild-type K-12 MG1655 ALE studies performed in similar conditions (5, 6). The two sets are striking in their lack of overlap; mutations that occur in almost every reported wild-type ALE experiment, in rpoB, pyrE/ryp, and hns/dtdk, occur rarely or not at all in Δpgi strains. Instead, the Δpgi ALE strains have a high frequency of mutations in the pyridine nucleotide transhydrogenases pntAB and sthA, the transcription factor rpoD, and the phosphotransferase system (PTS) sugar transport system component ccr. The distribution of these mutations across the 10 Δpgi ALE strains is also in Fig. 1A, showing that while some strains had many of these common mutations (ALE-2 had six out of the top seven), others had fewer (ALE-8 had only 1/7). This likely reflects less common but equally effective adaptive strategies. It is worthwhile to mention that some genes or genetic regions had many unique mutations in parallel evolutions (e.g., six for rpoD and five for pntAB). In contrast, the IS element insertion in ccr was identical in five different strains. Both patterns clearly demonstrate evidence for causality. It was previously demonstrated that the combination of rpoD and sthA mutations are causal for increased growth in Δpgi and exhibit positive epistasis (14). The difference in mutation profiles demonstrate that there are unique selective pressures in Δpgi, which result in unique adaptive responses. To further investigate how these mutations enabled the large increases in growth rates from the initial perturbed Δpgi state, we next characterized the carbon metabolism of each strain using 13C-MFA.

Activation of Latent Pathways, or Not? To characterize the rewiring of central carbon metabolism in the parental and ALE Δpgi strains, high-resolution 13C-MFA was performed. The analysis consisted of two parallel labeling experiments with [1,2,13C] and [1,6-13C]glucose [an experimental design previously identified as providing optimal flux estimate precision (25)], and the simultaneous fitting of labeling from proteinogenic amino acids, the ribose moiety of RNA, and glucose moiety of glycogen (26) to estimate fluxes. For the wild type, data from parallel labeling experiments previously reported were refitted (19). The full network model, the measured isotopomer distributions, and the estimated metabolic fluxes are in Supporting Information.

In Fig. 2 A–C, the estimated intracellular fluxes of the wild-type, Δpgi parental strain, and Δpgi ALE-3 are summarized. ALE-3 was the fastest growing Δpgi strain (0.51 h−1) and had an intracellular flux distribution typical of most of the ALE strains. The growth rates and glucose uptake rates for each strain are noted, and the fluxes shown are normalized to 100 units of glucose uptake. In all Δpgi strains, the forward and reverse fluxes of the PGI reaction were estimated to be zero, thus confirming the pg i knockout. The unevolved Δpgi (Fig. 2B) was found to utilize reactions and pathways that carry minimal flux in the wild type (Fig. 2A), including the ED pathway, glyoxylate shunt, and phosphoenolpyruvate carboxykinase (PCK) reaction [oxaloacetate to phosphoenolpyruvate (PEP)]. These flux changes have been noted in previous studies and have been described as “latent pathway activation” (2, 22–24, 27). After adaptive evolution, ALE-3 (Fig. 2C) and the other ALE strains significantly reduced the usage of these pathways; for example, the glyoxylate shunt flux was reduced from 25 to 6, and the PCK reaction from 22 to 3 in ALE-3. This “rerepression” following adaptive evolution has also been previously observed and been the focus of various speculations and computational analyses (13, 16). The previous terminology implies the presence of a transient regulatory response, activated in response to the stress caused by the knockout and then repressed during evolution to facilitate faster growth.

When interpreting metabolic fluxes, it is important to consider both normalized fluxes (e.g., relative to glucose uptake) and absolute fluxes (mmol g−1 dry wt h−1), as each provide complimentary information. Several key fluxes are shown in both units in Fig. 2D, corresponding to the pathway map shown in Fig. 2E. The glucose uptake rates used to calculate absolute fluxes are in Fig. S1. In Fig. 2B and D, we can see that although the oxPPP is the dominant route of glucose catabolism in Δpgi, the absolute flux is reduced by roughly half in the unevolved strain relative to the wild type. It has been previously reported that G6P accumulates in Δpgi and that G6PDH (encoded zwf), the first step in the oxPPP, is likely rate limiting for growth due to allosteric inhibition caused by an elevated NAPDH/NADP+ ratio (23).

Fig. 1. Growth rate recovery in evolved Δpgi strains is supported by unique mutations. (A) The growth rate is severely reduced in Δpgi strain relative to wild type (WT). This is significantly, but not completely, recovered through ALE (growth rate, mean ± SEM, n ≥ 3). (B) The frequency of mutations in 10 Δpgi-ALE strains is compared with those previously reported for 14 WT-ALE strains of E. coli (5, 6). The profile of mutations is quite distinct for Δpgi-ALE and WT-ALE strains. The distribution of mutations from the seven most frequently affected genes in the 10 Δpgi-ALE is also shown in A. Bottom, with the number of unique mutations per gene noted.
Energy Metabolism Is Not Significantly Affected by Adaptive Evolution in \(\Delta \text{pgi} \). The measured metabolic fluxes can also inform a broader analysis of energy metabolism in these strains. In Fig. 3 A and B, oxygen uptake rates and acetate yields are shown. In the unevolved \(\Delta \text{pgi} \), the oxygen uptake is reduced to 4.3 mmol\(g_{\text{DW}}\)^{-1} h^{-1}, down from 15 mmol\(g_{\text{DW}}\)^{-1} h^{-1} in the wild type, corresponding to the overall slowed metabolism and growth rate. The unevolved \(\Delta \text{pgi} \) does not produce acetate, as the citrate synthase (CS) flux can easily accommodate all of the flux from acetyl-CoA at less than half of its wild-type rate (Fig. 2D). In the ALE strains, oxygen uptake recovers to 62–91% of the wild-type flux and some strains produce acetate. This may represent a limit in TCA cycle or oxidative phosphorylation capacity that these strains encounter, above which excess glycolytic flux is diverted to acetate production. This acetate overflow effect is shown in Fig. 3C, which shows that the absolute flux through the pyruvate (Pyr) dehydrogenase (acytetyl-CoA generation) strongly correlates with the acetate secretion flux in all strains. Fig. 3 D and E show the normalized cofactor balances for ATP and NADH/FADH\(_2\) (the electron carriers used in oxidative phosphorylation for ATP production), with contributions to production and consumption by the various pathways and cell functions. One noticeable difference in the unevolved \(\Delta \text{pgi} \) strain is an increased contribution of the TCA cycle or oxidative phosphorylation to energy metabolism, leading to a slightly higher overall ATP yield. The ALE strains mostly reverted to normalized levels of total cofactor production and consumption that were very similar to the wild type. Overall, the profile of energy metabolism is remarkably conserved between wild type and evolved strains, when normalized to total cell mass.

This limitation is overcome in the evolved strains, where oxPPP fluxes are increased by three- to fourfold, to rates higher even than in the WT (by up to twofold). Intriguingly, the highest absolute flux was observed in ALE-9, which was the only evolved strain with a mutation in zwf (Supporting Information).

In cases of “activated latent” pathways, the absolute fluxes provide an especially illuminating perspective. There was no statistically significant increase in the absolute ED, glyoxylate shunt, or PKC fluxes in \(\Delta \text{pgi} \) compared with the wild type. Instead, a similar low level of absolute flux was maintained, which only appeared much larger in relative terms due to the dramatic reductions in absolute glucose uptake caused by the pgi knockout. Very little change was observed in the ALE strains for these latent pathway fluxes, with the lone exception of an elevated PKC flux in ALE-9. These results challenge the notion that these latent pathways are “activated” in a regulatory sense that increases their absolute flux capacity. Perhaps more likely is that these enzymes are expressed at low levels in the wild type, and this is maintained in the \(\Delta \text{pgi} \) strain, where due to the perturbation in glycolysis the same small rates of flux play a larger relative role. The reexpression in the ALE strains, then, is instead simply the recovery of faster glucose uptake rate (Fig. S1).
conserved in these strains. Perhaps the most significant difference between the wild-type and Δpgi strains in cofactor metabolism is in the reversed role of transhydrogenase (Fig. 3D).

Transhydrogenase Genes Are Mutated in Many but Not All Δpgi ALE Strains. *E. coli* is able to interconvert reduced cofactors with two pyridine nucleotide transhydrogenases, the membrane-bound PntAB, which primarily converts NADH to NADPH, and the soluble form SthA (also referred to as UdhA), which primarily converts NADPH to NADH (28). In the wild type, excess NADH produced in glycolysis and the TCA cycle is used to produce approximately half of the needed NADPH through the transhydrogenase (Figs. 3D and 4A and Fig. S2). In Δpgi, the redirection of glucose flux in upper central carbon metabolism, away from glycolysis and into the oxPPP, results in a significant excess of NADPH generation. Some of this is utilized by elevated biosynthesis flux (i.e., biomass yield) (Fig. S1), but most of the imbalance must be corrected by a reversal of the transhydrogenase to convert NADPH to NADH.

The absolute rates of NADPH production and consumption are shown in Fig. 4A. Here again is shown the impact of the forcing of flux through the oxPPP, which generates a large excess of NADPH and necessitates the reversal of the transhydrogenase. This transhydrogenase flux is shown in Fig. 4B in both absolute and relative fluxes. The relative flux increased in all 10 Δpgi strains, though not all have the same effect, and the relative flux was reduced significantly by perturbation of the PTS (Fig. 5A). Previous work has shown that EI of the PTS sugar transport system is reversible in vivo (32) (Fig. 5B). Here again is shown the impact of the forcing of flux through the oxPPP, which generates a large excess of NADPH, leading to a reversal of net transhydrogenase flux. This flux is shown in normalized and absolute units in B. The three transhydrogenase enzymes pntA, pntB, and sthA were frequently mutated in the ALE strains (C). Check marks reflect the presence of the described mutations in specific ALE strain. At least one transhydrogenase mutation occurred in 8 out of 10 strains.

The prevalence of the *crr* mutation and global metabolic perturbations in Δpgi, we hypothesized that the PPS/EI flux (Pyr to PEP) would be altered in these ALE strains. The PPS/EI flux was measured using an [U-13C]alanine tracer approach developed recently (32) (see Materials and Methods and Fig. S3). As shown in Fig. 5B, the extent of this flux varied widely among the ALE strains, and its magnitude corresponded strongly with the presence of the *crr* mutation. Expressed as normalized flux (relative to 100 units of glucose uptake), the PPS/EI flux was significantly elevated in the unevolved Δpgi (from 18 in the wild type to 47) and was reduced subsequently in strains lacking the *crr* mutation but maintained at a high level in the strains with the mutated *crr*. In absolute terms, the flux was significantly reduced in all Δpgi strains except for those with the *crr* mutation, where the flux was more similar to the wild type. Without further analysis of the activity of PPS in these strains, it is difficult to deduce the exact mechanism of these changes, but they are consistent with the previous observations in Δpgi (32). This result strongly supports a genetic–metabolic flux relationship between the *crr* IS element mutation and elevated PPS/EI flux. The high frequency of this identical mutation indicates a strong

Mutations in PTS Component *crr* Are Associated with Increased Back Flux from P needs to be figures.

Another frequently occurring, and more unexpected, mutation was an IS element insertion in *crr* in 5 of 10 ALE strains (Fig. 5). *Crr* encodes EIIAgK', the cytosolic subunit of enzyme II (EII) in the PTS glucose transport system. The PTS system is the primary mode of glucose uptake in *E. coli* and links the uptake and phosphorylation of glucose (by EI) to the glycolytic conversion of PEP to Pyr (by EI, linked by the intermediary phosphotransferase HPr) (30, 31) (Fig. S4). Previous work has shown that EI of the PTS sugar transport system is reversible in vivo (32) and that in the wild type 10% of PEP is produced from Pyr in the reverse (i.e., gluconeogenic) direction by this mechanism. Previous work has also shown that in a Δcrr strain, this flux is increased by more than twofold due to perturbation of the PTS equilibrium as well as some possible activation of PPS, the gluconeogenic enzyme also able to facilitate the reverse conversion of Pyr to PEP. Given the
selective pressure for this mutation, but the exact mechanism of the fitness benefit is unclear. In addition to its direct role in glucose uptake, crr is also involved in signaling the global regulator Crp (33), which controls the transcription of over 100 genes (34).

Discussion

In this work, we have explored how recovery of growth rate in Δpgi is enabled by unique genetic mutations and significant metabolic rewiring. In this system, fitness recovery was driven by global transcriptional regulation (i.e., sigma factors and other RNA polymerase components) and relief of a rate-limiting step at the cofactor transhydrogenase. This led to increased absolute flux through the oxidative pentose phosphate pathway and a corresponding recovery of faster glucose uptake and growth rates. The usage of latent pathways including the ED pathway, glyoxylate shunt, and PCK reaction were shown to represent no increase in absolute flux relative to the wild type and in absolute terms did not appreciably change after adaptive evolution. The availability of these pathways, expressed at low levels in the wild type, may offer flexibility when facing changing conditions. However, they do not appear to be “activated” as part of a general stress response in this case. These insights and the dataset presented here should help advance predictive metabolic modeling (35–37). Overall, these results add to our understanding of adaptive evolution by elucidating how challenges to specific cellular subsystems—that is, central carbon metabolism and glycolysis—are overcome. Future application of this approach to other significant, growth-limiting mutations in Δpgi could be sensed (46) by the PTS system—for example, via perturbation of the PEP/Pyr concentration ratio—and result in feedback inhibition of glucose uptake. Another is that the accumulated G6P (23) could induce a maladaptive regulatory response via CRP activation by P ~ EIIIB^{3lc}. In these scenarios, a crr mutation may help to decouple feedback inhibition or limit the harmful regulatory effect. Ultimately, it will be desirable to confirm the identities and interactions of causal mutations by reproducing them synthetically. Previous work (14, 21) confirmed causality and epistasis for sthA and rpoS mutations but did not thoroughly recapitulate the observed growth phenotypes of the evolved clones themselves. This likely points to a complex landscape that will become more feasible to explore as high-throughput genome engineering methods mature and many strains can be tested efficiently.

Materials and Methods

DNA Sequencing. Sequences were obtained using Illumina MiSeq. The breseq pipeline (47) was used to map sequenced reads and identify mutations relative to the E. coli K-12 MG1655 genome.

Tracer Experiments. For 13C-tracer experiments, strains were cultured aerobically in batch culture in M9 minimal medium at 37 °C in mini-reactors with 10 mL working volume (20). For the quantification of the Pyr to PEP flux, [U-13C]alanine tracer experiments were performed (32).

Gas Chromatography–Mass Spectrometry. Gas chromatography–mass spectrometry (GC-MS) analysis was performed on an Agilent 5977A mass spectrometer to measure labeling of proteinogenic amino acids (48, 49), glucose (derived from glycolysis), and ribose (from RNA) (26, 50, 51). Mass isotopomer distributions (MIDs) were obtained by integration and corrected for natural isotope abundances.

13C-MFA. 13C-MFA calculations were performed using the Metran software. For integrated analysis of parallel labeling experiments, the datasets were fitted simultaneously to a single flux model (18).

Data Availability. All data generated or analyzed during this study are included in this published article (and its Supporting Information files).
ACKNOWLEDGMENTS. This work was supported by NSF Grant MCB-1616332. C.P.L. and J.E.G. were also supported by the University of Delaware Graduate Fellows Award. A.M.F. and B.O.P. were supported under Novo Nordisk Foundation Center for Biosustainability Grant NNFOCC1016517.