Prediction of Solar Heating Plant Performance

Pieper, Henrik

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Prediction of Solar Heating Plant Performance

Henrik Pieper, Tel.: +45 50 30 09 61, Email: henpie@mek.dtu.dk

Introduction

- Denmark’s goal is to be CO₂ neutral in 2050
- More and more renewable energy
- >39% wind power in 2014
- >60% District heating (DH)
- >44% of DH supplied by biomass

Solar heating in Denmark

Fig 1: Installed solar collector area in EU in 2014 [m²]

Facts:
- 585,539 m² in EU, 66% in DK
- 14 out of 16 plants >10,000 m² in DK
- 1.3 mio m² in 2016 in DK
- Economy of scale → build large

Problem of many renewables:
- Depending on weather conditions
- Difficult to predict
- System imbalances
- Fluctuations of power prices

Solution:
- Improve forecasts of generating power and heat from renewables:
 - Objective: Predict thermal performance of large scale solar heating plants

Reference plant:
- Gram, 802 collectors, 10,000 m²

Method

Weather data → Model → Calculation of thermal performance → Plant data

What you need:
- Weather data: solar irradiation, wind speed and ambient temperature
- General plant data: location, size, orientation, tilt, collector type, etc.

What you get:
- Energy output, outlet temperature and volume flow rate

Model characteristics:
- Calculations based on basic heat transfer instead of efficiency expression
 \[
 \eta = \eta_0 - a_1 (T_{in} - T_{a}) + a_2 (T_{in} - T_{a})^2
 \]
- More complicated calculations, but accurate in off-design conditions
- Inlet temperature adjusted based on previous day
- Model chooses between:
 - Minimum volume flow rate \(V_{min} \)
 - Maximum outlet temperature \(T_{max} \)

Results & conclusion

- Entire plant modelled by single collector
- Constant time delay of 40 min to represent system inertia of the plant
 → Heat capacity of material
 → Running time of fluid through plant
- Validation based on reference plant using measured irradiation on the collector tilt, volume flow rate and inlet Temperature

Example of 11.05.2015:

Calculated vs. measured energy output:

Conclusion:
- Prediction of thermal performance possible
 → Reduced heat supply
 → Higher flexibility and stability
- Applicable for any location, plant and time
- Compatible with energy system optimization tools like Mentor Planner