Uncertainty Analysis for the Parameterization of Glycols

Kruger, Francois

Publication date: 2017

Document Version
Publisher’s PDF, also known as Version of record

Citation (APA):
Uncertainty Analysis for the Parameterization of Glycols
A review of the 4C association scheme for mono-ethylene glycol (MEG)
Francois Kruger
Supervised by: Nicolas von Solms & Georgios Kontogeorgis

Background
- Collaboration between DTU-CERE and StatOil ASA
- Natural gas dehydration: StatOil Subsea Factory™ and Gas-2-Pipe™
- Important Sales Gas specifications:
 - Hydrocarbon dew point: cricondenbar 105-110 bar
 - H₂O dew point: 32 ppm
 - Glycol in the gas phase 8 l/MSm³

Results and Discussion
Use of pure component experimental data versus pseudo data
- Accuracy of MEG liquid density prediction sacrificed by incorporating the LLE criterion
- MEG vapour pressure data exhibits significantly higher variance than the DIPPR correlation suggests
- Bootstrapped parameter plots show high degree of correlation when fitting to DIPPR

Uncertainty analysis: new CPA-4C MEG parameters
- Literature parameters do not match well with bootstrapped mean parameter estimator
- Mean of the average absolute error and 95% confidence interval over 1500 optimization runs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Literature</th>
<th>Mean</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>k₁₂</td>
<td>51.40</td>
<td>0.81</td>
<td>3.01</td>
</tr>
<tr>
<td>k₁₃</td>
<td>2532</td>
<td>4.55</td>
<td>15.4</td>
</tr>
<tr>
<td>PSat</td>
<td>2376</td>
<td>28.8</td>
<td>15.4</td>
</tr>
<tr>
<td>TPy₁₃</td>
<td>14.10</td>
<td>11.2</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Application for Simplified NG Dehydration Systems

Binary systems
- Improved correlation of the MEG entrained into CH₄-rich phase
- Prediction is best at both high temperature and high pressure
- Low temperature anomalies may be due to experimental difficulties

Ternary systems
- Prediction for MEG entrainment is much improved
- CH₄ solubility in the liquid phase is underpredicted

Conclusions
- Generation of new experimental data for additional model evaluation
- Apply uncertainty analysis to newly proposed association schemes
- Inclusion of tri-ethylene glycol (TEG) data and modelling
- Modelling of natural gas dehydration in Aspen

Future Work

Literature Review
CPA parameterization of glycols

Uncertainty analysis utilized in CPA model development
- Bootstrapping recently used [10] to fit CPA parameter estimation of CO₂
- Effect of using pseudo data was not specifically evaluated

Literature survey: data for systems of interest
- Binary data are relatively scarce in the open literature and often incongruent
- Single ternary data set (methane-water-MEG) available [7]
- CPA can model both phases (mixture parameters fitted CH₄ solubility data only)

Methodology
Parameter evaluation and uncertainty analysis
1. Data selection: pure and multicomponent
2. Determine objective function for parameter estimation:

 \[OF_{\text{min}}(a_i, b_i, c_i, \beta, \kappa_i) = \min \left(\sum (t_{\text{exp}} - t_{\text{fit}}) \right) \]

 \[i \in \{ \text{Sat}, \rho, \text{TPx}, \text{TPy} \} \]

3. Run optimization to obtain new parameters
4. Bootstrap: randomly sample (with replacement) from experimental data and refit parameters according to \(OF_{\text{min}} \)
5. Repeat Step #4 1500 times
6. Determine parameter distributions and confidence intervals
7. Evaluate performance versus literature

Results and Discussion

Use of pure component experimental data versus pseudo data
- Accuracy of MEG liquid density prediction sacrificed by incorporating the LLE criterion
- MEG vapour pressure data exhibits significantly higher variance than the DIPPR correlation suggests
- Bootstrapped parameter plots show high degree of correlation when fitting to DIPPR

Uncertainty analysis: new CPA-4C MEG parameters
- Literature parameters do not match well with bootstrapped mean parameter estimator
- Mean of the average absolute error and 95% confidence interval over 1500 optimization runs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Literature</th>
<th>Mean</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>k₁₂</td>
<td>51.40</td>
<td>0.81</td>
<td>3.01</td>
</tr>
<tr>
<td>k₁₃</td>
<td>2532</td>
<td>4.55</td>
<td>15.4</td>
</tr>
<tr>
<td>PSat</td>
<td>2376</td>
<td>28.8</td>
<td>15.4</td>
</tr>
<tr>
<td>TPy₁₃</td>
<td>14.10</td>
<td>11.2</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Application for Simplified NG Dehydration Systems

Binary systems
- Improved correlation of the MEG entrained into CH₄-rich phase
- Prediction is best at both high temperature and high pressure
- Low temperature anomalies may be due to experimental difficulties

Ternary systems
- Prediction for MEG entrainment is much improved
- CH₄ solubility in the liquid phase is underpredicted

Conclusions
- Generation of new experimental data for additional model evaluation
- Apply uncertainty analysis to newly proposed association schemes
- Inclusion of tri-ethylene glycol (TEG) data and modelling
- Modelling of natural gas dehydration in Aspen

Future Work

Acknowledgement
The authors wish to thank StatOil for their financial support of this research, which is part of the CHGIP (Chemical in Gas Processing) project.