Determination of 226Ra in natural water samples by liquid scintillation counting

Osváth, Szabolcs; Rell, Péter; Kónyi, Júlia Kövendiné; Szabó, Gyula

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Determination of 226Ra in natural water samples by liquid scintillation counting

Szabolcs Osváth 1, 2, Péter Rell 1, Júlia Kövendiné Kónyi 1, Gyula Szabó 1
1National Public Health Institute, Budapest, Anna utca 5, 1221, Hungary
2Current workplace: DTU Nutech, Roskilde, DTU Risø Campus, Frederiksværgejvej 399, 4000, Denmark
Corresponding author’s e-mail: osvath.szabolcs@oiss.hu

Abstract

A relatively fast, simple and reliable method has been developed for determination of 226Ra from natural water samples, using radioactive separation and liquid scintillation counting (LSC). This method is based on the usage of 12B as tracer, sorption on MnO$_2$ Resin® and precipitation of Ba(Ra)SO$_4$. Highlights

- A method has been developed for determination of 226Ra from natural water samples.
- The method is relatively fast, simple and reliable.
- The method is based on radioactive separation and LSC measurement.
- Activity of 226Ra and 228Ra were determined from the same LSC measurement.
- 226Ra in natural water samples was analyzed.

Introduction

226Ra can be present in drinking and surface waters, in natural waters and other environmental samples. It is an important radionuclide due to its high radio toxicity. It can be applied for the determination of 226Ra in natural water samples by the application of MnO$_2$ Resin® and precipitation of Ba(Ra)SO$_4$.

Material and methods

Methods

Methodology for the determination of 226Ra in natural water samples was developed. The method is based on the usage of 12B as tracer, sorption on MnO$_2$ Resin® and precipitation of Ba(Ra)SO$_4$. The samples were filtered through a 0.45 µm filter, and the solution was adjusted to 4-7 using 1 M HNO$_3$ or 1 M NaOH. After that 4 Bq 133Ba tracer and 1.25 g MnO$_2$ Resin® were added. The solution was filtered through a 0.45 µm filter (Application of MnO$_2$ Resin® for Co-precipitation with BaSO$_4$).

Results and discussion

Table 1 shows the results of determination of 226Ra in natural water samples by the developed methodology. The average chemical recovery was 60(±15)%, and we could not find correlation between recovery and sample composition (alkaline earth content).

Table 2 shows the results of determination of 226Ra in natural thermal waters of Slovakia and Hungary by the developed methodology. The average chemical recovery was 60(±15)%, and we could not find correlation between recovery and sample composition (alkaline earth content).

Table 3 shows the results of determination of 226Ra in medicinal thermal waters of Slovakia and Hungary by the developed methodology. The average chemical recovery was 60(±15)%, and we could not find correlation between recovery and sample composition (alkaline earth content).

Conclusions

The developed methodology for the determination of 226Ra in natural water samples is simple, reliable and cost-effective. It can be used for the determination of 226Ra in natural water samples with a detection limit of 0.2 Bq/L. The method is based on radioactive separation and liquid scintillation counting.

References

- Council of the European Union, 2013. Council Directive 2013/51/Euratom [3] (namely 40 mBq/L for drinking water) is easily achievable. Typical relative uncertainty of results (in cases they were over MDA) was 5%, calculated using a coverage factor of (1+L).