Components and materials for electrochemical energy conversion (KDFuelCell)

Jensen, Jens Oluf; Kirkebæk, Andreas; Cleemann, Lars Nilausen; Li, Qingfeng; Jensen, Kim Degn; Stephens, Ifan; Chorkendorff, Ib; Hjuler, Hans Aage; Steenberg, Thomas; Juul Larsen, Mikkel; Helgesen, Geir; Henkensmeier, Dirk; Han, HakSoo; Park, JinSoo

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
COMPONENTS AND MATERIALS FOR ELECTROCHEMICAL ENERGY CONVERSION (KDFuelCell)

A Korean-Danish Collaborative Effort

Jens Oluf JENSEN1, Andreas KIRKEBÆK1, Lars Nilausen CLEEMANN1, Qingfeng LI1, Kim Degn JENSEN2, Ifan STEPHENS2, Ib CHORKENDORFF2, Hans Aage HJULER3, Thomas STEENBERG3, Mikkel Juul LARSEN4, Geir HELGESEN5
Dirk HENKENSMEIER6, HakSoo HAN7 and JinSoo PARK8

1Department of Energy Conversion and Storage, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark, jojen@dtu.dk
2Center for Individual Nanoparticle Functionality (CINF), Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
3Danish Power Systems, Egeskovevej 6C, DK-3490 Kvistgård, Denmark
4EWII Fuel Cells A/S, Emil Neckelmanns Vej 15 A&B, DK-5220 Odense SØ, Denmark
5Nordic Institute of Asian Studies, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark
6Korea Institute for Science & Technology, Fuel Cell Reserch Center, 5 Hwarang 14 Gil, Seoul 02792, South Korea
7Yonsei University, Department of Chemical & Biomolecular Engineering, Seoul 120749, South Korea
8Department of Environmental Engineering, College of Engineering, Sangmyung University, 31 Sangmyungdae Gil, Cheonan 31066, Chungnam Province, South Korea.

Two lines of development ran in parallel in KDFuelCell, namely ion conducting membranes and catalysts, both for high-temperature PEM fuel cells. The membrane development targeted more durable and stronger membranes for high-temperature PEM fuel cells. The catalyst work was focused on the somewhat impeded catalytic activity of platinum in contact with phosphoric acid. The cultural aspect of the bilateral collaboration was treated in two bicultural workshops coordinated by Nordic Institute for Asia Studies.

The project was originally funded by the Strategic Research Council in Denmark as an international project for strengthening the scientific collaboration with South Korea. Today it is managed by Innovation Fund Denmark. The project ended ultimo September 2017. Selected results from all the three sub-projects will be presented.