Development of outdoor luminescence imaging for drone-based PV array inspection

Benatto, Gisele Alves dos Reis; Riedel, Nicholas; Thorsteinsson, Sune; Poulsen, Peter Behrensedorff; Thorseth, Anders; Dam-Hansen, Carsten; Mantel, Claire; Forchhammer, Søren; H. B. Frederiksen, Kenn; Vedde, Jan; Petersen, Michael; Voss, Henrik; Messerschmidt, Michael; Parikh, Harsh; Spataru, Sergiu; Sera, Dezso

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Development of outdoor luminescence imaging for drone-based PV array inspection

Gisele A. dos Reis Benatto¹, Nicholas Riedel¹, Sune Thorsteinsson¹, Peter B. Poulsen¹, Anders Thorseth¹, Carsten Dam-Hansen¹, Claire Mantel¹, Søren Forchhammer¹, Kenn H. B. Frederiksen², Jan Vedde³, Michael Petersen⁴, Henrik Voss⁵, Michael Messerschmidt⁶, Harsh Parikh⁶, Sergiu Spataru⁶ and Dezso Sera⁶

¹Department of Photonics Engineering, Technical University of Denmark, Frederiksbergvej 399, 4000, Roskilde, Denmark
²Kenergy, Grønningen 43, 8700, Horsens, Denmark
³SiCon Silicon & PV consulting, J N Vinthersvej 5, 3460, Birkerød, Denmark
⁴Skive Kommune, Torvegade 10, 7800 Skive, Denmark
⁵Sky-Watch A/S, Østre Alle 6 Støvring, Nordjylland, 9530, Denmark
⁶Aalborg University, Aalborg, 9220, Denmark

*E-mail: garb@fotonik.dtu.dk

Abstract—This work has the goal to examined experimentally PV module imaging methods under natural light conditions, that will be used in a fast, accurate and automatic drone-based inspection system for PV power plants.

Keywords—drone-based PV inspection; electroluminescence; photoluminescence; image processing; outdoor defect detection

I. INTRODUCTION

Regular fault detection for effective maintenance is highly important to ensure expected return on investment (ROI) of small and large-scale photovoltaic (PV) installations. Present day PV panels are designed to operate for 25-30 years, however field experience shows that after 11-12 years of operation 2% or more of all PV panels fail [1].

In practice, the frequency and inspection detail level is often limited by manpower and cost. Presently, drone-based infrared (IR) thermography inspection of solar plants is a reality [2], [3]. The accuracy of thermographic fault detection though, presents limitations – primarily related to deconvoluting the failure signature into failure type and severity, which can be overcome when performed in combination to electro-(EL) or photo-(PL) luminescence imaging of the panels. The combination of defect detection techniques has been already tested in laboratory [1], [4], although many limitations still need to be addressed in order to obtain image acquisition outdoors and integrate, automate and optimize the imaging system in a drone. The concept of PL/EL in a drone is illustrated in Fig. 1.

In this work, we present the results corresponding to the development of two luminescence-imaging strategies for PV modules defect detection in outdoor conditions, with the aim of choosing the most suitable method for implementation on a drone-based PV plant inspection system.

II. SUMMARY

The experimental tests performed in this work are focused on investigating EL and PL imaging techniques that are suitable for implementation into a drone-based inspection system. The PL technique avoids the need for electrical contact into the solar panels, which is a time limiting factor for drone-based inspection, especially in large-scale solar plants.

First, we investigate a modulated EL imaging method under daylight conditions, to determine the necessary camera and measurement parameters. A sequential image acquisition system was implemented in order to enhance the quality of the EL images obtained at high noise level during the day.

In the second part, we examine a PL imaging method under natural low light conditions, using a line-scanning laser for PL excitation. The PL signal acquired with such light source would be feasible for outdoor PL imaging, as the optical power is concentrated in a line as the image is build up with image processing.

ACKNOWLEDGMENT

The authors acknowledge the financial support from Innovation Fund Denmark for the DronEL project.

REFERENCES