Anholt offshore wind farm wake investigated from satellite data and wake models

Hasager, Charlotte Bay; Badger, Merete; Hansen, Kurt Schaldemose; Pena Diaz, Alfredo; Ott, Søren; Volker, Patrick; van der Laan, Paul; Ahsbahs, Tobias Torben

Publication date: 2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Anholt offshore wind farm wake investigated from satellite data and wake models

Charlotte Hasager
Merete Badger
Kurt S. Hansen
Alfredo Peña
Søren Ott
Patrick Volker
Paul van der Laan
Tobias Ahsbahs

Offshore Wind Energy Conference, 6-8 June 2017, London, UK
Anholt offshore wind farm

Number of turbines: 111
Wind turbine capacity: 3.6 MW
Rotor diameter: 120 meters

Construction period: 2012-2013

SCADA data for analysis is from January 1st, 2013 to June 30, 2015 (2.5 years)

Courtesy: DONG Energy
Research question

How well can we quantify the wake effect from modelling and satellite?

Sub-task:

How large is the coastal wind speed gradient?
Data

• Supervisory control and data acquisition (SCADA)
• Satellite Synthetic Aperture Radar (SAR)
• Weather Research and Forecasting model (WRF)
• Reynolds-averaged Navier-Stoke model (RANS)
Location
Fetch and wind speed gradient

Anholt Offshore Wind farm
DONG Energy

~27 km
~15 km
18-20 km
Coastal wind gradient investigation
SCADA

Wind speed interval 8 to 10 m/s
Westerly flow from 210° to 320°

Wind speed along row A; $8 < u_{park} \leq 10$ m/s; $\Delta = 10°$

Each symbol is one of the 30 turbines in row A.
European satellites with SAR

Envisat
2002-2012

Sentinel-1a/b
2014/2016-present
SAR wind data archive
SAR and WRF (without wind farm)
Mean wind speed at 10 m

SAR – 2002-2012

WRF – 2014
RANS and WRF (without wind farm)
Wind speed at hub-height for 270° ± 5°
Results from RANS

Animation 1:
Wind speed at hub-height from RANS without wind farm.

Animation 2:
Normalized wind turbine power from RANS and SCADA.

Challenges in simulating coastal effects on an offshore wind farm

IOP Visby wake conference 30 May - 1 June 2017 (in press)
RANS (without wind farm)
Wind speed at hub-height

Influence of coast line on inflow conditions at hub height of Anholt WF, wd=245.0

Horizontal wsp [m/s]

WT number in row A

Relative wd [deg]

Ti
RANS, WRF and SCADA
Wind speed at Row A
(turbines from south to north)

![Graph showing wind speed comparison between RANS (300 m, 600 m, 1200 m), WRF, and SCADA for wind directions of 250° ± 5°, 260° ± 5°, 270° ± 5°, and 280° ± 5°.](image-url)
Wake investigation
RANS and SCADA wind turbine power (normalized)
Wakes in SAR wind map

SAR Wind: S1B_ESA_2016.09.28_16.52_46.0528396766_12.34E_57.11N_Y_C11_GFS025CDF_wind_level2.nc

Wind Speed m/s

0 10 15 20

Wind Speed (m/s)

0 10 20 30
SAR-based mean wind speed at 10 m

Selection
30 Sentinel-1a/b scenes
Wind direction from 250° to 270° taken from the GFS data
Conclusions

There is significant wind speed gradient at Anholt offshore wind farm in particular for westerly flow.

SCADA, WRF, RANS and SAR confirm the wind speed gradient.

Wind farm wake from RANS and SCADA for specific wind speed and direction compare well.

Satellite SAR analysis indicate far-field wind farm wake.
Acknowledgements

We thank DONG Energy and partners for the SCADA data.

Satellite SAR data are from ESA and Copernicus.