Tuning the ground state of polar LaAlO3/SrTiO3 interface by an electron sink

Gan, Yulin; von Soosten, Merlin; Zhang, Yu; Niu, Wei; Christensen, Dennis Valbjørn; Sand Jespersen, Thomas; Pryds, Nini; Chen, Yunzhong

Published in:
2017 TO-BE Fall Meeting - Towards oxidebased Electronics

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gan, Y., von Soosten, M., Zhang, Y., Niu, W., Christensen, D. V., Sand Jespersen, T., ... Chen, Y. (2017). Tuning the ground state of polar LaAlO3/SrTiO3 interface by an electron sink. In 2017 TO-BE Fall Meeting - Towards oxidebased Electronics (pp. 72)
Tuning the ground state of polar LaAlO$_3$/SrTiO$_3$ interface by an electron sink

Yulin Gan1, Merlin von Soosten1, Yu Zhang1, Wei Niu1, Dennis Valbjørn Christensen1, Thomas Sand Jespersen2, Nini Pryds1 and Yunzhong Chen1*

1Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000 Roskilde, Denmark
2Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
E-mail: yuga@dtu.dk; yunc@dtu.dk;

Abstract
Most of the intriguing properties of two-dimensional electron gases (2DEGs) at the LaAlO$_3$/SrTiO$_3$ (LAO/STO) interface are sensitive to the electrons located in 3d-orbit of Ti. However, tuning the electronic structure of the system remains challenging due to the intrinsic high carrier density. Herein, instead of using LaMnO$_3$ (LMO) as buffer layers1, we show that Mn doping in LaAlO$_3$ (LAMO) creates an electron sink that alters the ground state of 2DEG by suppressing the carrier density at the interface, without changing the polarity of the system. By precise control of the Mn-doping level, we found that 2DEGs in our system experience a change from two-band to one-band transport with decreasing carrier density, which is accompanied by a Lifshitz transition at a critical carrier density of 2.76×1013 cm$^{-2}$ at 2K. Significantly, the peak value (255.7mK) of superconducting transition temperature is observed at Lifshitz point. In addition, our experiments realize the coexistence of ferromagnetism (FM) and superconductivity (SC) by Mn doping.

References: