Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides

Kaasbjerg, Kristen; Martiny, Johannes H. J.; Low, Tony; Jauho, Antti-Pekka

Published in:
Physical Review B (Condensed Matter and Materials Physics)

Link to article, DOI:
10.1103/PhysRevB.96.241411

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides

Kristen Kaasbjerg,1,* Johannes H. J. Martiny,1 Tony Low,2 and Antti-Pekka Jauho1
1Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
2Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 29 August 2017; published 21 December 2017)

Intervaley scattering by atomic defects in monolayer transition-metal dichalcogenides (TMDs; MX2) presents a serious obstacle for applications exploiting their unique valley-contrasting properties. Here, we show that the symmetry of the atomic defects can give rise to an unconventional protection mechanism against intervalley scattering in monolayer TMDs. The predicted defect-dependent selection rules for intervalley scattering can be verified via Fourier transform scanning tunneling spectroscopy (FT-STS), and provide a unique identification of, e.g., atomic vacancy defects (M vs X). Our findings put the absence of the intervalley FT-STS peak in recent experiments in a different perspective.

DOI: 10.1103/PhysRevB.96.241411

Introduction. Two-dimensional (2D) monolayers of transition-metal dichalcogenides (TMDs; MX2) are promising candidates for spin- and valleytronics applications [1]. Their hallmarks include unique valley-contrast properties and strong spin-valley coupling [1,2] exemplified by, e.g., valley-selective optical pumping [3–5], a valley-dependent Zeeman effect [6–9], and the valley Hall effect [10]. Such means to control the valley degree of freedom are instrumental for valleytronics applications.

Another prerequisite for a successful realization of valleytronics is a sufficiently long valley lifetime [11,12]; atomic defects are a common limiting factor which can provide the required momentum for intervalley scattering due to their short-range nature. However, as illustrated in Fig. 1(a), the spin-orbit (SO)-induced spin-valley coupling in the K,K′ valleys of 2D TMDs partially protects the valley degree of freedom against relaxation via intervalley scattering by nonmagnetic defects [2]. Due to the small spin-orbit splitting in the conduction-band valleys [13,14], only the valence-band valleys fully benefit from this protection. Identification of additional protection mechanisms in the conduction band would hence be advantageous for valleytronics in 2D TMDs.

In this Rapid Communication, we demonstrate that besides the spin-valley coupling, the symmetry and position of atomic defects give rise to unconventional selection rules for intervalley quasiparticle scattering in 2D TMDs. As illustrated in Fig. 1(b), we find that for defects with threefold rotational symmetry (C3), e.g., atomic vacancies, intervalley K ↔ K′ scattering in the conduction band is forbidden for defects centered on the X site while it is allowed for M centered defects. In the valence band, intervalley scattering is forbidden in both cases. Analogous selection rules for the intervalley coupling due to confinement potentials in 2D TMD-based quantum dots have previously been noted [15].

Our findings can be readily verified with scanning tunneling spectroscopy (STS) which has provided valuable insight to the electronic properties of 2D TMDs [16–20]. In particular, Fourier transform STS (FT-STS) is a powerful method for investigating atomic defects and their scattering properties in 2D materials [21,22]. The measured STS map is a probe of the local density of states (LDOS) whose real-space modulation, resembling Friedel oscillations, originates from quasiparticle interference (QPI) between electronic waves scattered by defects. Hence, the Fourier transform of the STS map provides direct access to the available scattering channels, e.g., graphene [23–30], monolayer TMDs [18,19], and black phosphorus [31].

In the above-mentioned STS experiments on TMDs, the strong spin-valley coupling in the valence band of WS2 was confirmed by the missing K ↔ K′ intervalley peak in the FT-STS spectrum [18,19]. Surprisingly, the intervalley peak was also missing in the conduction band where intervalley scattering should be allowed [18,19] [see Fig. 1(a)].

![FIG. 1. Symmetry-dependent defect scattering in monolayer TMDs. (a) Sketch of the band structure near the K,K′ points. The strong spin-valley coupling in the valence band suppresses intervalley scattering (•). In the conduction band, the small spin-orbit splitting, in principle, allows for intervalley scattering (○). However, for defects with threefold rotational symmetry (C3), additional selection rules arise which protect against intervalley scattering. (b) Atomic sulfur vacancy in 2D MoS2 showing the C3 symmetry of the vacancy site. The vacancy-dependent selection rules for K ↔ K′ intervalley scattering in the conduction band are illustrated in the bottom part, showing that only M vacancies produce intervalley scattering (green arrow). This allows for a unique identification of the vacancy type with FT-STS.](image-url)
Here, we demonstrate the effect of symmetry on quasiparticle scattering by atomic vacancies which are among the most common types of defects in 2D TMDs [32–38]. For this purpose, we perform atomistic density-functional (DFT)-based T-matrix calculations [39] of FT-STS and QPI spectra for vacancies in two archetypical TMDs: the direct gap [44], small SO split MoS2, and the indirect gap [17], large SO split [13,14] WS2. As we show, the $K \leftrightarrow K'$ conduction-band intervalley FT-STS peak is strongly suppressed for X vacancies while it appears clearly for M vacancies, thus offering an appealing explanation for its conspicuous absence in experiments [18,19]. Our findings furthermore show that FT-STS allows for a unique identification of the vacancy type, and indicate that the valley dynamics of carriers and excitons in 2D TMDs are not affected by disorder if M-type defects can be avoided.

Symmetry-dependent intervalley scattering. We consider first the effect of symmetry on intervalley scattering by defects in 2D TMDs. The selection rules can be deduced within the framework of the low-energy Hamiltonian [2].

$$\mathcal{H}(\mathbf{k}) = at(k_x \hat{\sigma}_x + k_y \hat{\sigma}_y) + \frac{\Delta}{2} \hat{\sigma}_z + \tau \lambda \frac{\mathbf{I} - \hat{\sigma}_z}{2},$$

(1)

describing the band structure in the K, K' valleys sketched in Fig. 1(a). Here, a is the lattice constant, t is a hopping parameter, τ is the valley index, Δ is the band gap, λ is the SO splitting at the top of the valence band, and $\hat{\sigma}_x, \hat{\sigma}_y,$ and $\hat{\sigma}_z$ are Pauli matrices in the symmetry-adapted spinor basis, valley, and spin space, respectively. The symmetry-adapted basis is spanned by the M d orbitals $|\phi_{d\tau}\rangle = \sqrt{2}(|d_{\tau=+}\rangle + i|d_{\tau=-}\rangle)$ and $|\phi_{dz\tau}\rangle = |d_{\tau}\rangle$ which dominate the states in the valence (v) and conduction (c) bands, respectively [45,46].

In 2D TMDs, defects such as atomic vacancies have C_3 symmetry, i.e., $\hat{V}_l = C_3 \hat{V}_l C_3$, where \hat{V}_l is the scattering potential for defect type i and C_3 is the operator for threefold rotations by $\pm 2\pi/3$ around the defect center. The intervalley matrix element $(\tau \neq \tau')$ between the high-symmetry K, K' points can thus be written

$$\langle n\tau | \hat{V}_l | n\tau' \rangle = \langle n\tau | C_3^1 \hat{V}_l C_3^1 | n\tau' \rangle = \langle n\tau | C_3^2 \hat{V}_l C_3^2 | n\tau' \rangle = \gamma_{i,\tau}^{\tau\tau'} \langle n\tau | \hat{V}_l | n\tau' \rangle,$$

(2)

where n is the band index (including spin) and $\hat{I} = C_3^1 C_3$ is the identity operator. As C_3 belongs to the group of the wave vector at the K, K' points (C_{3v}), the Bloch functions transform according to the irreducible representation of C_{3v}, $C_3|\psi_n\rangle = w_{i,\nu}|\psi_n\rangle$, where $w_{i,\nu}$ denotes the eigenvalues of C_3. The matrix element can thus be expressed in terms of the complex scalar $\gamma_{i,\tau}^{\tau\tau'} = w_{i,\nu} w_{i,\tau'}$, as indicated in the last equality of (2). Our analysis shows that $\gamma_{i,\tau}^{\tau\tau'} = 1$ only if the defect is centered on an M site and $n = c$ [39]. In all other cases, $\gamma_{i,\tau}^{\tau\tau'} \neq 1$, and the intervalley matrix element vanishes identically by virtue of Eq. (2).

The symmetry argument is completely general, and thus applies to all types of M, X-centered defects in 2D TMDs with C_3 symmetry, e.g., complex defect structures [32,36], adatoms, and substitutional atoms [37]. As Eq. (1) is diagonal in spin space, it furthermore holds for intervalley spin-flip scattering by magnetic defects.

FT-STS theory. Next, we outline a general T-matrix-based Green’s function approach for the calculation of the FT-STS spectra. In STS, the measured real-space QPI pattern is related to the differential conductance $dI/dV \propto \rho(\mathbf{r}, \mathbf{r}'); [47]$, and hence the LDOS $\rho(\mathbf{r}, \mathbf{r}) = -1/\pi \text{Im}[G(\mathbf{r}, \mathbf{r}; \epsilon)]$, where $G(\mathbf{r}, \mathbf{r}'; \epsilon) = (\mathbf{r}G(\epsilon)\mathbf{r}')$ is the Green’s function (GF) in real space in the presence of a defect. Expressing the GF in a basis of Bloch states $\psi_{nk}(\mathbf{r})$, $G(\mathbf{r}, \mathbf{r}'; \epsilon) = \sum_{mn} \sum_{kk} \psi_{nk}^*(\mathbf{r})\psi_{mk}(\mathbf{r})G_{nk, mk}(\epsilon)$, where \mathbf{k} is the wave vector and m,n band indices, the FT-STS spectrum given by the 2D Fourier transform of $\rho(\mathbf{r}, \mathbf{r})$ can be obtained as [39]

$$\rho(\mathbf{q} + \mathbf{G}, \epsilon) = \int d\mathbf{r} e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} \rho(\mathbf{r}, \epsilon)$$

= \frac{1}{2\pi i} \sum_{mn, k} G_{nk, mk}(\epsilon) G_{mk, kn}(\epsilon) = 2\pi i \sum_{mn, k} G_{nk, mk}(\epsilon) G_{mk, kn}(\epsilon),$$

(3)

where $\mathbf{r} = (r, z), \mathbf{q}, \mathbf{k}, \mathbf{q} \in 1$ Brillouin zone (BZ), \mathbf{G} is a reciprocal lattice vector, and $G_{nk, mk}(\epsilon) = (\langle \psi_{nk}\mathbf{G}(\epsilon)|\psi_{mk}\rangle)$ is the Bloch function representation of the GF. The matrix element $n_{k, q}^{mn}(\mathbf{G}) = (\langle \psi_{nk}\mathbf{G}(\epsilon)|\psi_{mk+q}\rangle)$ is important in many aspects. For example, it describes the FT-STS Bragg peaks ($\mathbf{G} \neq 0$), and hence the atomic modulation of the LDOS inside the unit cell. It also plays a central role in systems with (pseudo)spin texture, e.g., graphene and spin-orbit materials, as it contains the spinor overlap [48]. This is less important in 2D TMDs where the eigenstates of Eq. (1) are characterized by predominantly polarized spinor states [49] with trivial pseudospin $\hat{\sigma}$ and spin \hat{s} textures.

For a single defect, the exact GF taking into account multiple scattering off the defect is given by the T matrix as

$$G_{kk'}(\epsilon) = \delta_{kk'} G_0^{(k)}(\epsilon) + \sum_{kk'} G_{kk''}^{(m)}(\epsilon) T_{kk'}(\epsilon) G_{kk''}(\epsilon),$$

(4)

where the boldface symbols denote matrices in band and spin indices, and the diagonal bare GF is given by the band energies, $G_0^{(k)}(\epsilon) = (\epsilon - c_{kk} + \mu)^{-1}$. The last term in Eq. (4) comprises the nondiagonal, defect-induced correction $\delta G_{kk',kk}$ to the GF. To isolate the FT-STS features related to the defect, we substitute $G \rightarrow \delta G$ in Eq. (3) in our FT-STS calculations.

The T matrix obeys the integral equation

$$T_{kk'}(\epsilon) = V_{kk'} + \sum_{kk'} V_{kk} G_{kk'}^{(0)}(\epsilon) T_{kk'}(\epsilon),$$

(5)

where $V_{kk'}^{mn}$ are matrix elements of the defect potential and the second term describes virtual transitions to intermediate states with wave vector K'. For nonmagnetic defects, we take $\hat{V}_l = V_l(\hat{r}) \otimes \delta_0$, where δ_0 is the identity operator in spin space. With the spin indices written out explicitly, the defect matrix elements can be expressed as

$$V_{i, kk'}^{mn}(s, s') = \sum_{s''}(n_{ks} | V_{i, kk'}^{mn} | n_{ks'}),$$

(6)

where $V_{i, kk'}^{mn}$ are matrix elements of the defect potential and the second term describes virtual transitions to intermediate states with wave vector K'. For nonmagnetic defects, we take $\hat{V}_l = V_l(\hat{r}) \otimes \delta_0$, where δ_0 is the identity operator in spin space. With the spin indices written out explicitly, the defect matrix elements can be expressed as

$$V_{i, kk'}^{mn}(s, s') = \sum_{s''}(n_{ks} | V_{i, kk'}^{mn} | n_{ks'}),$$

(6)
with \(|\psi; s_z\rangle\) denoting the \(s_z = \pm 1\) spinor component of the wave function. Here, we use a DFT method based on an atomic supercell model for the defect site illustrated in Fig. 1(b) to calculate the defect matrix elements [39].

As an example, Fig. 2 shows the spin-diagonal conduction-band matrix elements for Mo and S vacancies in 2D MoS\(_2\). While the Mo vacancy gives rise to intravalley (short arrow) and intervalley (long arrow) couplings, the intervalley matrix element for the S vacancy vanishes, thus confirming the symmetry-based predictions in Eq. (2). Furthermore, we note that the matrix element in the \(K, K'\) valleys is an order of magnitude larger for Mo than for S vacancies. In a simple picture where only \(K, K'\) intra- and intervalley scattering with a constant matrix element \(V_0\) is considered, the \(T\) matrix becomes \(T(\varepsilon) = V_0/[1 - gV_0\tilde{G}_0(\varepsilon)]\), where \(\tilde{G}_0(\varepsilon) = \int \frac{dk}{(2\pi)^2} G_{kk'}^0(\varepsilon) \propto \rho_c\), \(\rho_c \approx 0.01 \text{ eV}^{-1} \text{Å}^{-2}\) is the density of states, and the valley multiplication factor \(g = 2\) for Mo and 1 for S vacancies. Together with the values for \(V_0\) extracted from Fig. 2, this allows us to identify \(M = \text{Mo}, V_0 > 1\) and \(X = \text{S}, V_0 < 1\) vacancies as strong (unitary), \(T(\varepsilon) \approx -1/g\tilde{G}_0(\varepsilon)\), and weak, \(T(\varepsilon) \approx V_0\), defects, respectively.

The FT-STS calculations presented below are based on full BZ \(k, q\)-point samplings of the band structures, defect matrix elements, and \(K^\text{mm}(G)\) matrix elements, all obtained with DFT-LDA including a SO interaction [39]. Our approach naturally goes beyond the low-energy description in Eq. (1), which is essential as both the \(K\) and \(Q\) valleys are relevant for quasiparticle scattering in 2D TMDs. As intervalley scattering in the valence band is suppressed by (i) the large spin-valley coupling, and (ii) the \(C_3\) symmetry of the vacancies, the valence-band FT-STS spectra are rather simple [18, 19], and we here limit the discussion to the conduction band. We furthermore focus on features related to the symmetry-forbidden intervalley scattering, deferring a complete analysis to a forthcoming paper.

FT-STS and QPI spectra. The calculated band structures and FT-STS spectra for atomic vacancies in MoS\(_2\) and WSe\(_2\) are summarized in Fig. 3. The different conduction-band structures in the two materials (\(K\) vs \(Q\) valley alignment and magnitude of the SO splitting), shown in the insets in Fig. 3(a), and the vacancy-dependent intervalley matrix element result in markedly different spectra between the materials as well as the vacancy type.

In general, the FT-STS spectra close to the band edge (\(\varepsilon \approx 0\); see Ref. [39]) are characterized by featureless spots at the points in \(q\) space corresponding to intravalley (\(q = 0\)) and intervalley scattering [\(q_{1,5}\) in Fig. 3(b)]. The spot intensities

![Fig. 2. Defect matrix elements for the conduction band in 2D MoS\(_2\) calculated with our DFT-based supercell method. The plots show \(|V_{kk'}^0(s,s)\rangle\) for (a) a Mo, and (b) a S vacancy as a function of \(k\) with the initial state fixed to \(k = K\). Note the different disorder strengths (colorbars) for the two types of vacancies as well as the vanishing intervalley matrix element (long arrow in (a)) for S vacancies.](image)

![Fig. 3. Band structures and FT-STS spectra for atomic vacancies in MoS\(_2\) (top) and WSe\(_2\) (bottom). (a) Band structures including SO interaction. The insets show a zoom of the SO split conduction-band \(K, Q\) valleys with the energy \(\varepsilon = E - E_c\) measured relative to the band edge \(E_c\). The dashed lines indicate the energy of the constant-energy surfaces in (b) and the FT-STS spectra in (c), (d). (b) Constant-energy surfaces in \(k\) space for \(\varepsilon = 75 \text{ meV}\), together with high-symmetry \(k\) points in the Brillouin zone (top) and representative intervalley \(q\) vectors (bottom). (c), (d) FT-STS spectra at \(\varepsilon = 75 \text{ meV}\) for (c) \(M = \text{Mo}, W\) and (d) \(X = \text{S, Se}\) vacancies. The boxes show zooms of the marked regions.](image)
are governed by the T-matrix scattering amplitude and valley degeneracy. For the Bragg peaks, the intensity is reduced compared to those in the first BZ due to the phase-factor matrix element $\eta^{\text{osc}}_{\mathbf{q}, \mathbf{G}}(\mathbf{G})$.

In MoS$_2$, the SO splitting in the conduction band is small, $\sim 3\text{ meV}$, whereby allowing for spin-conserving $K \leftrightarrow K'$ intervalley scattering $(\mathbf{q}_{1,2})$ near the band edge. Hence, intervalley peaks at $\mathbf{q} = K, K'$ are to be expected. In WSe$_2$, the Q valley is lower than the K valley and the SO splitting is much larger ($\sim 250\text{ meV}$ in the Q valley and $\sim 50\text{ meV}$ the K valley), hence a $\mathbf{q} \approx M$ peak due to $Q \leftrightarrow Q'$ intervalley processes (\mathbf{q}_1) will appear instead.

The above is indeed the case in the FT-STS spectra for M vacancies shown in Fig. 3(c) for an energy $\varepsilon = 75\text{ meV}$ above the band edge [dashed lines in the insets in Fig. 3(a)]. At this energy, the spots have developed into features (see the zoomed insets) which are dominated by processes involving nesting vectors between parallel segments of the constant energy contour being probed. In MoS$_2$ with almost isotropic energy contours, $\varepsilon(k) = \varepsilon$, intravalley backscattering with $q = 2k$ therefore produces circular features. Trigonal warping of the constant energy surfaces gives rise to additional approximate nesting vectors which produce starlike patterns with hexagonal symmetry around the Γ point and triangular symmetry near the K, K' points as in graphene [30]. The intervalley features are weaker than the intravalley feature because intravalley processes in the K and K' valleys add up, while the two $K \leftrightarrow K'$ intervalley processes have distinct wave vectors, $\mathbf{q} \approx \pm K$. In WSe$_2$, both the Q and K valleys are accessible at $\varepsilon = 75\text{ meV}$, and therefore intervalley features around $\mathbf{q} \approx M$, $\mathbf{q} \approx K$, as well as $\mathbf{q} \approx Q$ are observed. They are associated with $Q \leftrightarrow Q/K \leftrightarrow Q (\mathbf{q}_{1,4})$, $K \leftrightarrow K' (\mathbf{q}_{1,2})$, and $K \leftrightarrow Q (\mathbf{q}_3)$ processes, respectively. The central intravalley feature in WSe$_2$ has more structure than in MoS$_2$ as it has contributions from both K and Q intravalley processes. At even higher energies (not shown), the K and Q valleys are available in both MoS$_2$ and WSe$_2$, and the FT-STS spectra become highly complex.

In contrast to the FT-STS spectra for M vacancies, the spectra for X vacancies in Fig. 3(d) show that the anticipated intravalley feature at $\mathbf{q} \approx K (\mathbf{q}_{1,4})$ is strongly suppressed for both MoS$_2$ and WSe$_2$. This is a direct consequence of the symmetry-forbidden $K \leftrightarrow K'$ intervalley matrix element which suppresses intervalley scattering also in the vicinity of the high-symmetry K, K' points [see Fig. 2(b)]. In WSe$_2$, also the $Q \leftrightarrow Q'$ (\mathbf{q}_3) and $Q \leftrightarrow K (\mathbf{q}_{4,5})$ intervalley features are much weaker for X vacancies, which can be traced back to overall small intervalley matrix elements.

The suppression of $K \leftrightarrow K'$ intervalley scattering for X vacancies leaves a clear fingerprint in the real-space LDOS, as demonstrated by the QPI maps in Fig. 4 for Mo and S vacancies in MoS$_2$. They have been obtained by Fourier transforming the FT-STS spectra in Figs. 3(c) and 3(d), $\rho(\mathbf{r}, \varepsilon) = \sum_{\mathbf{q}, \mathbf{G}} \int d\mathbf{G}_2 \, e^{i\mathbf{q} \cdot \mathbf{G}_2} \rho(\mathbf{q} + \mathbf{G}, \varepsilon)$. For both vacancies, the LDOS modulation has a threefold symmetry and decays away the vacancy site (marked by crosses). The observed atomic resolution can be attributed to the FT-STS Bragg peaks, and shows that the LDOS modulation is concentrated on the Mo sites of the lattice, in accordance with the Mo d-orbital character of the conduction-band states in the K, K' valleys [cf. Eq. (1)]. Noticeably, the QPI map for the S vacancy stands out by the absence of an intervalley-scattering-induced cell-to-cell modulation of the LDOS in the vicinity of the vacancy, which is clearly visible for the Mo vacancy. At larger distances from the vacancy site, a slower modulation with wavelength $2\pi/q = 10a$ at $\varepsilon = 75\text{ meV}$ due to intravalley backscattering, $q = 2k$, emerges.

Conclusions and outlook. In conclusion, we have demonstrated (i) an unconventional symmetry-induced protection against intervalley scattering by atomic defects in 2D TMDs, and (ii) its fingerprint in conduction-band FT-STS spectra which allows for a unique identification of, e.g., the vacancy type. Our findings may offer an explanation why the $K \leftrightarrow K'$ intervalley FT-STS peak has not been observed in experiments [18,19], and are also relevant for FT-STS on metallic TMDs [50].

We are convinced that our work, in conjunction with further experimental FT-STS studies, can provide a complete understanding of defect scattering in 2D TMDs. In addition, FT-STS may shed important light on band-structure issues in 2D TMDs, such as the magnitude of SO splittings [18], the K, Q-valley ordering in the conduction band which is sensitive to the SO strength [13,14], and the subband structure and valley ordering in few-layer TMDs [51,52]. Besides our reported FT-STS signatures, the suppression of intervalley scattering is expected to have implications for a wide range of effects in disordered 2D TMDs, e.g., the optical conductivity [53], magnetotransport [54–58], the valley Hall effect [59], Elliot-Yafet spin relaxation [60], and disorder-induced valley pumping [61].

Acknowledgments. We would like to thank an anonymous reviewer on a related work [62] for suggesting we investigate observable implications of our symmetry finding for intervalley scattering. K.K. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 713683 (COFUNDFellowsDTU). T.L. acknowledges support from the National Science Foundation under Grant No. NSF/EFRI-1741660. The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation, Project No. DNRF103.

[39] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.96.241411 for details on (i) the derivation of Eq. (3), (ii) the DFT-based calculations of the FT-STS spectra and the involved quantities, (iii) additional FT-STS spectra at the band edge, and (iv) the symmetry analysis of the defect matrix elements, which includes Refs. [40–43].

