Development and Performance of Zirconia Based Oxygen Transport Membranes for Carbon Capture Processes

Pirou, Stéven; Hendriksen, Peter Vang; Kaiser, Andreas; Kiebach, Wolff-Ragnar

Published in:
Book of Abstracts, Sustain 2017

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Development and Performance of Zirconia Based Oxygen Transport Membranes for Carbon Capture Processes

Steven Pirou¹, Peter Vang Hendriksen¹, Andreas Kaiser¹, Ragnar Kiebach¹

1: Department of Energy Conversion and Storage, Technical University of Denmark, Risø campus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
*Corresponding author email: stepir@dtu.dk

Oxygen Transport Membranes (OTMs) can facilitate a more sustainable society by supplying oxygen to combustion processes, leading for example to more efficient Carbon Capture and Storage (CCS) or cement production. OTMs are inorganic, high temperature devices typically formed by dense Mixed Ionic Electronic Conductors (MIECs). The separation mechanism consists of the following steps: on one side of the OTMs molecular oxygen is reduced to oxide ions, which are incorporated into oxygen vacancies of the MIEC and diffused to the other side, where oxide ions are oxidized back to molecular oxygen. The transport of electrons occurs in the opposite direction. Dual-phase membranes are a good option for applications under harsh conditions (e.g. flue gas containing CO₂, SO₂, H₂O) because they consist of a composite of a stable ionic conductor and a stable electronic conductor, which can combine high oxygen flux and chemical stability at the same time.

This work will describe the use and benefits of OTMs for carbon capture processes and present the development and performance of planar zirconia based dual-phase OTMs taking place at the Technical University of Denmark (DTU). Three composite materials based on the ionic conducting phase 10Sc1YSZ ((Y₂O₃)₀.₀₁(Sc₂O₃)₀.₁₀(ZrO₂)₀.₈₉): 10Sc1YSZ-MnCo₂O₄, 10Sc1YSZ-Al₀.₀₂Zn₀.₉₈O₁.₀₁ and 10Sc1YSZ-LaCr₀.₈₅Cu₀.₁₀Ni₀.₀₅O₃.₆ were successfully prepared and characterized as planar dual-phase asymmetric OTMs for direct operation (4-end mode membrane module) in oxy-fuel combustion power plants. Stability tests performed under conditions relevant for oxy-fuel combustion (SO₂, CO₂, H₂O) underlined the excellent stability of the three composites. Among the zirconia-based membranes, the 10Sc1YSZ-MnCo₂O₄ and 10Sc1YSZ-LaCr₀.₈₅Cu₀.₁₀Ni₀.₀₅O₃.₆ composites developed in this work display the two highest oxygen permeabilities (1.41 mL/cm² min⁻¹ and 1.11 mL/cm² min⁻¹ at 950 °C in air/N₂, respectively), which is 200 % higher than the highest oxygen permeation flux previously reported in literature.