Wireless Powered Lab-on-Disc Platform for Measurements on the Spin

Wang, Jen-Hung; Cheng, Chung-Hsiang; Thoppe Rajendran, Sriram; Zor, Kinga; Wang, Wei-Min; Boisen, Anja; Huang, Kuang-Yuh; Hwu, En Te

Published in:
Book of Abstracts, Sustain 2017

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wireless Powered Lab-on-Disc Platform for Measurements on the Spin

Jen-Hung Wang2, Chung-Hsiang Cheng2, Sriram Thoppe Rajendran1, Kinga Zor1, Wei-Min Wang2, Anja Boisen1, Kuang-Yuh Huang2 and En-Te Hwu*1

1Technical University of Denmark, Denmark
2National Taiwan University, Taiwan
*Corresponding author email: etehw@nanotech.dtu.dk

We integrate Qi wireless power, Arduino microcontroller, Bluetooth signal transmission and lab-on-disc technique for developing a sample-to-answer biosensing platform (Fig. a). The wireless powered lab-on-disc platform (PLoD) connects to an Android smartphone for real-time digital to analog converter (DAC) and analog to digital converter (ADC) control. Furthermore, the PLoD is capable of measuring data while spinning, as shown in Fig. b and c.

The first application of the PLoD is a potentiostat for electrochemical based biosensing\cite{1}, we have successfully measure Ferri Ferrocyanides Current-Potentio curve while spinning from 0 to 3000 rpm. There are various lab-on-disc applications\cite{2} can be carry out by the PLoD platform for the future stand-alone diagnostics and healthcare systems.

Reference

\cite{2} P. Kassal, J. Kim, R. Kumar, W. R. de Araujo, I. M. Steinberg, M. D. Steinberg, and J. Wang, “Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status”, Electrochemistry Communications, vol. 56 (2015), pp. 6 - 10.