Piezoelectric transformers: Control

Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Andersen, Nils Axel; Zhang, Zhe

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Piezoelectric transformers: Control

Gabriel Zsurzsan, Michael A.E. Andersen, Nils Axel Andersen, Zhe Zhang
DTU will develop and create value using the natural sciences and the technical sciences **to benefit society.**

H.C. Ørsted, founder of DTU in 1829
Technical University of Denmark - DTU

- DTU Electrical Engineering
- DTU Lyngby Campus
- DTU Ballerup Campus
- DTU Risø Campus
- Arctic Technology Centre (ARTEK)
- Hirtshals
- Østerild
- Mors
- Silkeborg
- Høvsøre
- Copenhagen
- DTU LYNGBY CAMPUS (main campus)
- Charlottenlund
- Frederiksbjerg
- Mørkhøj
- Lindholm
- DTU Risø Campus
Technical University of Denmark - DTU

5,895 human resources (FTEs)

- 21% researchers and educators (VIP)
- 43% in support functions
- 36% PhD fellows*

11,031 full-time students

- 28% BEng
- 32% MSc
- 40% BSc

*Employees only
DTU Electrical Engineering

Power engineering
Automation, control, and robotics
Biomedical engineering, CMR, ultrasound
Antennas & microwave tech.
Acoustics
Hearing systems
Power electronics & IC design
Electronics group
Electronics group

• Is research leader within:
 – Switch-mode (class D) Audio power amplifiers
 • 3 spin-off’s: B&O ICEpower & TI Denmark & Merus Audio
 • Highest output power IC class-D amplifier chip ever
 – High efficiency fuel cell power converters
 • Has the **highest efficiency** (> 98%) fuel-cell power converter ever
 – VHF power converters

• Provides **unique solutions** to the collaborating companies
• One of the most **innovative groups** at DTU:
 – 46 inventions
 – Start-up companies:
 • ICEpower (former Bang & Olufsen ICEpower)
 • Texas Instruments DK (former Toccata)
 • Upcon Technology
 • Merus Audio
 • Nordic Power Converters
 • Senserna
 • Nordic Firefly
Electrical behaviour of piezos

- Capacitive behavior
- Inductive behavior
- Resistive behavior
Inductive behaviour of piezos

- Intro
- Capacitive behavior
- Inductive behavior
- Resistive behavior
- Conclusions
Piezoelectric transformers
Self-oscillating PT-based SMPS
Control block
SO Principle
Bidirectional operation
Modular design
Why inductorless?
MRI testing
MRI testing

SNR degradation of 10dB

Conclusions

PT-based SMPS control method:

- Simple method for minimizing hard-switching losses
- Fast control to track and maintain self-oscillation
Thank you for your attention!